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Abstract. WebAssembly (Wasm) is a popular portable assembly-like language.
Besides browser support in the four most common browsers (Chrome, Firefox,
Safari, Edge) a number of standalone Wasm engines are available. With several
such independent implementations naturally follows a risk of disagreement be-
tween the individual implementations.
To help ensure agreement between Wasm implementations, we develop a stack-
directed program generator to drive differential testing of the four browsers’
Wasm engines. We describe our experimental setup, our development of a stack-
directed shrinker for reducing a generated counterexample program, and finally
report on a number of disagreements and bugs found. Surprisingly our black-box
generator found 2 crashing bugs, despite browser vendor efforts to fuzz test their
Wasm engines using a state-of-the-art fuzzer.

1 Introduction

WebAssembly (Wasm) is a new open web standard [26] for executing low-level code in
web pages. In order to succeed, Wasm programs should be interpreted consistently by
the four major browsers implementations (Chrome, Firefox, Safari, Edge). To ensure
such consistency both a reference interpreter and an extensive test suite is available.
Given the incompleteness of testing, one may wonder whether these efforts are suffi-
cient to guarantee consistency. In this paper we present a generator of arbitrary Wasm
programs and report on testing for this consistency. Furthermore we present a shrinker
to automatically reduce a machine-generated counterexample illustrating inconsistency.

(module
(func)
(start 0)
(table $0 1 anyfunc)
(elem 0
(offset (i32.const 0)) 0))

Fig. 1: Wasm program crashing SpiderMonkey
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(module
(func (param i32) (param i32) (result i32)
(get_local 0)
(get_local 1)
(i32.add))

(export "add" (func 0)))

Listing 1: A Wasm module in text format with a simple addition function

For example, a Wasm program produced by our generator was able to crash Spi-
derMonkey, the JavaScript engine inside the Firefox web browser. Fig. 1 illustrates a
reduced version of the test case and Firefox’s behavior upon attempting to run it.

Overall the contributions of this paper are:

– We suggest the ideas of (backwards) stack-directed program generation and stack-
directed shrinking.

– We illustrate the approach with an application to WebAssembly.
– We demonstrate that the approach is both viable and useful as illustrated by a num-

ber of real-world Wasm engine bugs found (including crashing bugs).
– We discuss ours findings, documenting real-world bugs that escaped a coverage-

guided “gray-box” fuzzer thus questioning the current focus on such generators.

2 Background

We first present background material on Wasm and property-based testing.

2.1 WebAssembly

The Wasm standard defines a low-level programming language for a stack-based virtual
machine [12]. For example, Listing 1 shows a simple Wasm module with a function that
takes two arguments and returns their sum. The function loads each of the numbered
parameters onto the operand stack, adds them, and leaves the result on the stack. Wasm
is designed for embedding. This is expressed as exporting functions for the surrounding
context to call and importing functions from the surrounding context for Wasm to call.
For example, Listing 1 exports the module’s function under the name "add". In a web-
embedding context, this means Wasm modules can call imported JavaScript functions
and that JavaScript can call the exported Wasm functions. Similarly a Wasm module
can import and export functions from other Wasm modules.

Wasm programs can be expressed in both a textual assembly-like format (.wat) as
in Listing 1 and in a corresponding binary format (.wasm). Translators are available to
translate between the two. In a web-embedding context a Wasm-module can be loaded
from an untrusted source into a browser. A module then has to be validated to ensure
that it is well formed and safe to run. The validator is phrased as a type system centered
around four value types: i32, i64, f32 and f64, denoting 32-bit and 64-bit integers
and 32-bit and 64-bit floating-point numbers, respectively. For the example in Listing 1
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(module
(table 10 funcref)
(func $f)
(func $f2 (call_indirect 3))
(elem (i32.const 0) $f)
(elem (i32.const 3) $f))

Listing 2: Wasm table initialization

the validator checks that the two arguments on the stack when performing i32.add are
indeed i32s and that the i32 result agrees with the function’s declared result type.

A Wasm program consists of one or more modules. Besides functions, a module
can contain a combination of elements which we now cover.

Global variables A Wasm module can contain global variables. A global variable
can be accessed throughout the module using the get global instruction. Each global
is declared with a value type and optionally marked as mutable. Mutable global vari-
ables can be updated using the set global instruction. Global variables can both be
imported and exported.

Memories and data segments A Wasm module can also contain a memory which
is a mutable array of raw bytes. By default the memory is initialized with zeroes. A
module can contain a separate section of data segments that each specify the initial
memory contents at a specific offset and length. When a Wasm module is loaded and
instantiated, the allocated memory is initialized accordingly before Wasm code is run.

Functions A module can contain multiple functions. Each function’s parameters
are defined as locals and can only be accessed by the defining function. Locals are mu-
table. They can be read and updated with the get local and set local instructions,
which push and pop values to and from the stack. A function can optionally declare
a return value type. In the current version of Wasm, a function can return at most one
value. A function’s body is a possibly empty instruction sequence. The instructions may
interact with the stack, locals, globals, memories, or tables. A module can also contain
a dedicated start function. The start function is executed automatically after the mem-
ories and tables have been initialized. The start function cannot take any arguments or
return any value. For example, the Wasm module in Fig. 1 designates function 0, the
module’s only (empty) function as the start function.

Tables A Wasm module may contain a table of functions. In the current version
of Wasm, a module can only contain a single table instance. A table instance can be
defined by the module itself or imported from another module, hence a table can also be
exported. Tables require a minimum size and can optionally declare a maximum size. A
table can also be initialized through element segments. The call indirect instruction
calls a function through a table. Listing 2 shows an example of a table initialization
via element segments. The table is declared to contain 10 elements, with funcref

(function reference) type.1 The named function $f is then added to the table at indices
0 and 3. The named function $f2 calls the function $f indirectly through the table.

Instructions We summarize the abstract syntax of Wasm instructions and modules
in Fig. 2. Instructions can consume multiple arguments and produce a result value by

1 In revised text format https://github.com/WebAssembly/spec/issues/884
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(value types) t ::= i32 | i64 | f32 | f64
(packed types) tp ::= i8 | i16 | i32
(function types) tf ::= t∗ → t∗

(global types) tg ::= mut
? t

(functions) f ::= ex∗
func tf local t∗ e∗

| ex∗
func tf e∗ im

(globals) glob ::= ex∗
global tg e∗

| ex∗
global tg im

(tables) tab ::= ex∗
table n i∗

| ex∗
table n im

(memories) mem ::= ex∗
memory n

| ex∗
memory n im

(imports) im ::= import “name” “name”
(exports) ex ::= export “name”
(modules) m ::= module f∗ glob∗ tab? mem?

unopiN ::= clz | ctz | popcnt
unopfN ::= neg | abs | ceil

| floor | trunc
| nearest | sqrt

binopiN ::= add | sub | mul
| divsx | remsx | and
| or | xor | shl
| shrsx | rotl | rotr

binopfN ::= add | sub | mul | div
| min | max | copysign

testopiN ::= eqz
relopiN ::= eq | ne | ltsx

| gtsx | lesx | gesx
relopfN ::= eq | ne | lt

| gt | le | ge
cvtop ::= convert | reinterpret

sx ::= s | u

(instructions) e ::= unreachable | nop | drop | select | block tf e∗ end | loop tf e∗ end

| if tf e∗ else e∗ end | br i | br if i | br table i+ | return
| call i | call indirect tf | get local i | set local i | tee local i

| get global i | set global i | t.load (tp sx )? a o | t.store tp? a o
| current memory | grow memory | t.const c
| t.unopt | t.binopt | t.testopt | t.relopt | t.cvtopt t sx

?

(context) C ::= { func tf ∗, table n?, memory n?, global tg∗,

local t∗, label (t∗)∗, return (t∗)? }

Fig. 2: Abstract syntax of modules and contexts

popping and pushing the stack. In the current version of Wasm, instructions can push
at most one value to the stack. Numeric instructions perform basic operations over
numeric values of a specific type, e.g., i32.add in Listing 1. Parametric instructions
operate on operands of any type, e.g., the select instruction selects one of its first two
operands based on whether its third operand is zero or not. Variable instructions get
or set the values of local and global variables, e.g., get_local in Listing 1. Memory
instructions query or mutate the memory, e.g., the memory.grow instruction extends
the size of a module’s memory. Control instructions affect the flow of control, e.g., the
return instruction breaks from the current instruction block and returns the current
value from the top of the stack.

Module validation A Wasm module is executed in a web browser after validation
and instantiation. While validation ensures internal consistency and memory safety of
a module, instantiation ensures that the imports and exports are correctly formulated.
The validator is phrased as a syntax-directed type system [7] over the abstract syntax of
a module. Typing is relative to a context C holding information about the surrounding
functions, tables, memories, globals, locals, labels, and return type for a given program
point. Fig. 2 recalls the abstract syntax of Wasm modules and contexts, utilizing ex-
tended BNF grammars for succinctness. We furthermore let t range over value type, tf
range over function types, tg range over global types, and n range over numbers.
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C ` e∗ : [t∗] → [t∗](EMPTY)
C ` ε : [t∗] → [t∗]

(NON-EMPTY)
C ` e∗ : [t∗1] → [t∗0 t

∗] C ` e : [t∗] → [t∗3]

C ` e∗ e : [t∗1] → [t∗0 t
∗
3]

(CONG)
C ` e∗ : [t∗1] → [t∗2]

C ` e∗ : [t∗ t∗1] → [t∗ t∗2]

C ` e : [t∗] → [t∗]

(CONST)
C ` t.const c : ε→ [t]

(BINOP)
C ` t.binop : [t t] → [t]

(DROP)
C ` drop : [t] → ε

(CALL)
Cfunc(i) = tf

C ` call i : tf

(CALLINDIR)
tf = [t∗1] → [t∗2] Ctable = n

C ` call indirect tf : [t∗1 i32] → [t∗2]

(LOOP)
tf = [tn1 ] → [tm2 ] C, label(tn1 ) ` e∗ : tf

C ` loop tf e∗ end : tf
(BR)

Clabel(i) = [t∗]

C ` br i : [t∗1 t
∗] → [t∗2]

Fig. 3: Typing rules for instructions and instruction sequences

Fig. 3 displays a selection of the typing rules. The two judgements are of the form
C ` e : [t∗] → [t∗], where e is a single instruction (or an instruction sequence e∗) and
[t∗] is a stacktype. The stacktype expresses e’s requirement to elements on the stack
prior to its execution (a precondition) and the elements on the stack as a result of e (a
postcondition). Arrow types tf = [t∗] → [t∗] double as function types, as functions
receive parameters and leave their results on the stack.

The rule (EMPTY) says that an empty instruction sequence is valid in any context
C and that any value types t∗ on the stack will remain unchanged. The rule (NON-
EMPTY) for a non-empty instruction sequence e∗e ensures that (parts of) the resulting
stack from executing e∗ agrees with the stack input expected by e. The congruence rule
(CONG) allows one to disregard untouched elements on the stack and thereby apply the
instructions rule in an arbitrary context.

The rule (CONST) says that a const instruction requires no input from the stack
and leaves type t on top of the stack. Similarly the rule (BINOP) for a binary operation
requires two elements with type t on top of the stack, and leaves a single element with
type t. The rule (DROP) says that a drop instruction is valid in any context C with a
one-element stack and results in an empty stack ε. The rule (CALL) for a function call

instruction expects the function to have some index i and function type tf = [t∗1]→ [t∗2]
and requires the parameters to be present on the stack at entry and leaves the (optional)
result type on the stack. The rule (CALLINDIR) for a call indirect instruction addi-
tionally ensures that a function table is present and that the function’s index is available
as an i32 on top on the stack. The rule (LOOP) checks a loop instruction’s body recur-
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sively in a context that records the loop head’s label and expected input type. Finally
the rule (BR) for a branch instruction br i checks agreement between the stack’s input
types and the expected stack types [t∗] at the target label i.

2.2 Property-based testing

Property-based testing (also known as QuickCheck) is a randomized testing approach
introduced by Claessen and Hughes [8]. Originally QuickCheck was phrased as a Haskell
library, but the approach has since been ported to over 30 other programming languages.
In this paper we will use the QCheck property-based testing library [9] for OCaml. In
property-based testing, a test is described by a generator and a property. The generator
delivers randomized test input whereas the property expresses a test specification for
each such generated input.2 As an example, consider the following QCheck test:

open QCheck
let t = Test.make (pair pos_int pos_int)

(fun (a, b) -> a + b >= 0)

Here the generator produces pairs of positive integers (including zero). It is phrased
by composing QCheck’s built-in pos_int and pair generator combinators. For each
such pair (a, b) we wish to test the property a+ b ≥ 0. The generator and the property
are passed as arguments to Test.make and the resulting test is bound to the name t.

We can now provide QCheck with a (singleton) list of tests to run:

QCheck_runner.run_tests ~verbose:true [t]

This runs a loop for 100 iterations (a configurable number) checking that each gener-
ated pair satisfies the specified property. The framework reports a counterexample if it
finds one, i.e., a generated test input that fails to satisfy the specified property. QCheck
quickly finds a counterexample for our example property:

generated error fail pass / total time test name
[7] 4 0 1 3 / 100 0.0s anon_test_1

--- Failure --------------------------------------------------

Test anon_test_1 failed (22 shrink steps):

(829922565348744309, 3781763453078643595)

In this case, the 4th generated pair failed the property. We confirm that the reported pair
represents a counterexample, due to integer overflow:

# 829922565348744309 + 3781763453078643595;;
- : int = -4611686018427387904

Note how this sum coincides with OCaml’s min_int, the least representable integer
within OCaml’s 63-bit integer type. In general, a counterexample triggers a second

2 Other generation approaches exist, e.g., SmallCheck’s enumeration up to some bound [24].
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shrinking loop, that repeatedly tries to reduce the test input and checks whether the re-
duced input still fails the property. In the above case, using QCheck’s built-in shrinkers
for integers and pairs it took 22 shrink steps to reduce the counterexample.

To test more complex systems, custom generators and shrinkers can be developed.
Such generators and shrinkers can be used for testing multiple different properties.
Since its inception, property-based testing has found bugs missed by hand-written tests
across a range of domains, such as telecom protocols [2], data structures [1, 18], election
software [15], automotive software [14], and compilers [19, 20].

3 Generating WebAssembly

Generating Wasm programs from a more high-level language, such as C, is a viable
solution. In the process of mechanising and verifying the WebAssembly specification,
Watt [25] opted for this approach to verify his model. Although this approach produces
valid Wasm programs that pass the type-checker, it is not an ideal solution, since the
produced programs are confined to the subset of Wasm utilized by the compiler.

To achieve the highest possible coverage of the Wasm language, we instead chose to
directly generate Wasm text format programs that can be translated to the binary format
and executed in a browser. To ensure this, the generated programs must both be syntac-
tically correct to pass the parser, as well as type-correct to pass the validator. Structuring
a generator according to the productions of the grammar ensures the former. To ensure
the generated program also passes validation, the generation should follow the typing
rules of the language. Pałka et al. [20] suggested to structure such a type-directed pro-
gram generator according to the typing rules. For a functional language with roots in a
typed λ-calculus, this means that a typing relation of the form Γ ` e : τ , is interpreted
as a generation procedure with two inputs: the surrounding type environment Γ and the
goal type τ . In this way, the generator proceeds to build a term recursively, in each step
randomly choosing among the typing rules able to satisfy (unifying with) the goal type.

With Wasm’s typing rules tracking value types on the stack, we propose to phrase a
stack-directed program generator. In the rest of this paper we show that such a generator
is both viable and useful, as it has helped locate subtle bugs in major Wasm engines.

3.1 A stack-directed generator

Our generator can generate modules with an arbitrary number of globals and functions
and with an optional memory and an optional table, both of arbitrary size. In order for
the context to have the right entries in scope, this mandates a certain structure for the
generator. Overall our module generator is structured in the following order:

– generate context with an optional memory and an optional table
– generate global types and constant initializers, function signatures, and optional

data segments for the memory
– generate optional element segments for the table
– generate function bodies
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(** instrs_rule : context_ -> value_type list -> int -> (instr list) option Gen.t **)
let rec instrs_rule context output_ts size =
let recgen con t_opt tr = Gen.(instr_rule con t_opt (size/4) >>= function
| None -> return None
| Some (con’, instr’, ts’) ->

instrs_rule con’ (ts’@tr) (3*size/4) >>= (function
| None -> return None
| Some instrs -> return (Some (instr’::instrs)))) in

match output_ts with
| [] ->

let empty_gen = recgen context None [] in
Gen.(oneof [ empty_gen; return (Some []) ])

| t1::trst ->
let empty_gen = recgen context None output_ts in
let non_empty_gen = recgen context (Some t1) trst in
Gen.frequency [ 1, empty_gen; 4, non_empty_gen; ]

Listing 3: The implementation of instrs_rule

By generating the function signatures before the function bodies, we can add them to the
context, thus enabling us to generate both recursive and mutually recursive functions.
With this order the globals and the optional memory and table are similarly in scope for
function bodies. Our generator of function bodies follows the typing rule specification:

tf = [t∗1]→ [t∗2] C, local t∗1, label (t∗2), return (t∗2) ` e∗ : []→ [t∗2]

C ` ex∗ func tf e∗

Upon entry to a function, the stack is empty and the actual parameters are available
as locals. To generate a body we extend the context accordingly and seek to generate a
body with the desired result type [t∗2]. This way we generate Wasm programs backwards
in a goal-directed manner.

Our instruction generator performs a back-tracking randomized search. We use
option types to distinguish a successful generation attempt from a failed one. The
algorithm for generating instructions is phrased as two mutually recursive function
instrs_rule and instr_rule for generating instruction sequences and single in-
structions, respectively, thereby reflecting the two forms of typing judgments in Figure
3. The two search functions are both parameterized by the context (modeling C) and a
“gas parameter” to bound the search depth. In addition instrs_rule expects a goal
stack type matching the resulting stack type in the corresponding typing judgments.
Similarly instr_rule expects an optional goal type matching the potentially absent
type result in the corresponding typing judgments.

Listing 3 contains the implementation of instrs_rule which heavily utilizes the
monadic interface (return, >>=) of QCheck generators. It depends on a local function
recgen that generates the last instruction instr’ and an instruction list preceding it
and then gluing them together. We dedicate 3

4 of the gas parameter size to generating
the instruction list, thinking that more gas should be dedicated to generating a sequence
than an individual instruction. The instr_rule generator performs a weighted shuffle
of the compatible instruction rules and then tries them one at a time in the resulting
order. When no rules are left to try it returns None to signal failure and backtrack.

Our generator produces a single module with three hard-coded export and import
functions. The three exported functions return an i32, an f32, and an f64 for the sur-
rounding engine to invoke. We omit i64 as a surrounding JavaScript engine currently
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has no way to represent these precisely. We import three printing functions for printing
i32, f32, and f64 values to increase the chance of some observable program output.
Currently our generator does not produce modules that export or import globals, tables,
and memories.

Our implementation builds on the reference interpreter for Wasm [23]. This saved
us from reimplementing a representation of Wasm modules. On the other hand, the
representation is not custom fit for program generation, e.g., with positional informa-
tion surrounding all internal AST nodes and functions referenced by list index which
complicates shrinking (described in Sec. 4).

4 A stack-directed shrinker

As illustrated in Sec. 2.2, a shrinker is useful to automatically reduce a counterexample
to help narrow down a potential bug. This is vital as our generator sometimes produces
modules with several large data segments and many functions with long and complex
bodies. We have therefore implemented a shrinker. Since the generator was carefully
engineered to produce modules that pass validation, our shrinker’s reductions should
preserve this property. We achieve this by stack-type preserving simplifications.

Our shrinker is composed of a number of overall heuristics which attempt the reduc-
tions with most impact first. The surrounding QCheck library (like its Haskell ancestor)
wraps this shrinker in a loop that repeatedly applies simplifications while still leading to
a false property. This way, the individual shrink heuristics complement each other and
work together to reduce a counterexample module. To shrink a given Wasm module,
the shrinker attempts the following, in order:

– shrink functions and function types simultaneously
– shrink imports and import types simultaneously
– shrink function bodies
– remove unneeded functions
– remove the start function
– reduce the exported functions
– reduce the globals
– reduce the declared types
– remove the table
– shrink the element segment
– remove the memory
– shrink the data segment

Few of these rewrite steps are semantics preserving. Functions are shrunk by first at-
tempting to aggressively remove their body or replace it with a constant 0 of the ap-
propriate return type. If this fails, a more complex instruction list shrinker is invoked.
The instruction list shrinker pattern matches on either 1, 2, or 3 consecutive instructions
and attempts stack-preserving rewrites for each of them. Below we give examples from
each category.

One instruction Removing nop instructions is the most simple as it has no effect on
the stack. Similarly we can remove tee_local and unary operations as they leave the
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generator convert.js timeout 10 run

cmp

cmp

cmp

.wasm

tmp ch.js

tmp jsc.js

tmp sm.js

tmp v8.js

tmp ch

tmp jsc

tmp sm

tmp v8

Fig. 4: Experimental setup

same value type on the stack as they consume. Additionally we rewrite global references
to a lower index of the same type, e.g., get_global 321 to get_global 3 of the
same type. Although it hardly represents a reduction in itself, it typically triggers further
reductions in the module’s list (tail) of global variables. As a final example we rewrite a
call instruction into a drop instruction for each argument, finishing with an optional
const 0 of the appropriate type for non-void functions. Again, locally this may not
constitute a reduction. However it may trigger removal of the target function or further
reductions involving the drop instructions.

Two instructions Motivated by the above we remove consecutive sequences of
const c drop, get_local i drop, and get_global i drop. Similarly we remove
subsequences of const c br_if i and of get_local i set_local j and its variations
and combinations involving globals. Sequences const c testopiN that perform a test
on c are replaced with const 0 and sequences const c if _ is1 else is2 is with a
two-armed conditional we attempt to rewrite into either is1@is or is2@is . Finally, we
rewrite two consecutive unreachable instructions into a single one. Combined with
another heuristic that swaps two instructions if the first is unreachable, this has the
effect of bubbling unreachable instructions last and eliminating duplicates.

Three instructions We rewrite a sub-sequence const c const c′ compare into a
const 0 thus removing two instructions. Similarly to the 2 instruction-case, we omit
a sequence consisting of const c const c′ select. Since select expects three value
types [t t i32] on the stack and leaves either the second or the third, the reduction has
the effect of leaving a t and thus preserving the types.

The heuristics were inspired by actual counterexample programs. Generally, we
found that the shrinker got faster as we added more aggressive heuristics, e.g., removing
unused functions saved shrinker time over repeatedly reducing function bodies. We
confirmed this observation by rerunning such tests with the same randomization seed
with and without the added heuristic. Overall the shrinker fills 535 lines of OCaml code.

5 Testing experiments

We first describe our experimental setup before discussing our findings.

5.1 Experimental setup

We use our generator and accompanying shrinker to test four Wasm engines against the
reference interpreter. Concretely we use JSVU [11] to install pre-built command-line
versions of Chakra (ch) from Edge, JavaScriptCore (jsc) from Safari, SpiderMonkey
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(sm) from Firefox, and V8 (v8) from Chrome. This installs nightly builds of each of the
four engines. Each JavaScript (JS) engine contains a WebAssembly module to test.

The pre-built engines support pure JS and Wasm. As such we cannot run them on
a JS-file that requires file-reading or network to load a generated Wasm module. As a
workaround we have written a conversion script, convert.js, in Node.js which sup-
ports file-reading. The script converts a .wasm-file into a self-contained JS-file with
an embedded Uint8Array containing the Wasm module, thus suitable for running in
each engine (see Fig. 4). The self-contained JS-file sorts the Wasm-module’s exported
functions, calls them in sorted order, prints the return value from each, and redirects
any output to a temporary file. As we may generate an infinite loop we run each engine
with a timeout of 10 seconds akin to CSmith [27]. Finally we use the cmp command
to compare the resulting output files. Overall, our agreement property ensures that the
conversions succeed, that the timeouts return identical return codes, and that their
redirected outputs agree. To further compare the four engines with the reference inter-
preter, we fork a separate process that interprets the module’s AST directly, using a
Unix.alarm to time out. There are more complications however:

Printing across engines Pure JS does not support console.log, but 3 out of
4 engines support it. As a further complication we experienced that V8 would buffer
output when this was redirected to a file. This would show up as a difference in behavior,
e.g., when a generated program console.logs one line and then enters an infinite
loop: after a 10 second timeout the other three engines would have output, whereas V8
would not. We eventually settled on using print which happens to be supported by
all four JS engines, despite not being part of the ECMAScript standard.

Host error messages When invoking a generated Wasm module from JS throws an
exception, the attached error message varies across the different JS engines. We solved
this issue by formulating regular expressions for each engine to catch and normalize
engine-specific error messages into comparable ones.

Printing floating point numbers The different JS engines apply different algo-
rithms for printing floating point numbers. For example, one generated Wasm program
returned the floating point number 6.980439946950613e+234 to the hosting JS
engine. However when invoked as print(6.980439946950613e+234) the con-
stant prints as 6.980439946950614e+234 in all 3 engines except Chakra where
it prints as 6.980439946950613e+234. This is a known issue and Chakra’s engi-
neers have already adjusted their printer to agree more with the other JS engines.3 Since
we are concerned with testing Wasm engines we did not want such differences to raise
any flags. As a first attempt we added logic to only print a certain amount of signifi-
cant digits, thus checking agreement up to this bound. This left the difficulty of decid-
ing how many significant digits to leave. Eventually we settled on a simpler approach:
(6.980439946950613e+234).toString(2) instead prints the number in base
2 which agrees across all engines. To compare these outputs with the reference inter-
preter’s output, we then had to implement a compatible base 2 printing for it.

Stack size Our generator has a chance of generating programs that require increas-
ing amounts of stack space and ultimately stack overflow due to excessive (sometimes

3 https://github.com/microsoft/ChakraCore/issues/149
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indirect) recursive calls. When such programs have output, the number of written char-
acters may differ across implementations. We solved this problem by comparing only
the 5000 first output characters of each JS-embedded implementation. For the refer-
ence interpreter with a significantly smaller stack, we compare only its first 300 output
characters. Even so, the test setup found a counterexample program where each of the
4 JS engines blew the stack before the 10 second timeout, whereas the reference in-
terpreter did not. For this example, JavaScriptCore would blow the stack after 0.241s,
V8 after 6.148s, SpiderMonkey after 0.164s, Chakra after 1.861s, and the OCaml inter-
preter after 19.664s (all measured with the time command), which may indicate either
a significantly slower reference interpreter or some tail-call optimization.

Maximum table size The official specification declares the maximum table size to
be 232 = 4.294.967.296 however none of the four JS engines support that value. At first
glance all of the four engines allow the maximum table size to be 10.000.000. Analyz-
ing further, we determined that JavaScriptCore supports a table with a maximum size
of 9.999.999. For a table size set to 10.000.000 precisely, jsc throws the error message
couldn’t create Table. All four engines accepted tables less than 10.000.000
entries, hence we adjusted the generator accordingly.

Maximum number of parameters During testing, we came across a Wasm mod-
ule that caused all of the four tested JS engines to err. This happened because the number
of function parameters exceeded 1.000. Examining the specification, we did not find any
mention of a limitation on the maximum number of function parameters. Subsequently
we adjusted the generator to stay below this bound.

Square root non-determinism Our generator found a counterexample calculating
the square root of a negative number thus resulting in a NaN floating-point value, which
would later be reinterpreted as an integer value and eventually printed. Because NaNs
can carry additional underspecified bits, this also showed up as observable output differ-
ences. This constitutes one of the few known sources of Wasm non-determinism [26].

5.2 Testing the generator

The generator is a non-trivial piece of software with a risk of itself containing errors.
To reduce these errors and to “take our own medicine” we test the generator using
property-based testing. Specifically the generator is engineered to output valid Wasm
modules. As there further exists many implementations of the validation algorithm in
the reference interpreter and in each of the JS engines, these lend themselves to test the
property each generated Wasm module passes validation. By testing this property for
each of the validation implementations, we effectively test both our own generator as
well as each of the validation implementations.

5.3 Testing the shrinker

The shrinker also represents a non-trivial piece of code. To develop and debug it we
again property-based tested it. Initially we tested whether the first shrinking candidate
would pass validation. This did not find much. Eventually we arrived at a relatively
simple property: for all generated modules m and small natural numbers n, the first n
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shrink candidates of m should all be valid, meaning shrinking should not accidentally
turn a valid module into an invalid one while attempting to reduce it in up to n steps.

The refined strategy found multiple bugs as we continued to expand and improve
the shrinker: It found problems lifting If branches and Loop body out which both
caused labels to be off. It found another shrinker bug related to reducing functions,
types, and imports: These are represented as 3 lists, each containing numbered types
and functions. Any reduction in either list therefore means that potentially all function
or type indices need to be updated. However the representation has catches we did not
anticipate: The imports are present in the type list but not in functions, meaning function
indices needed adjusting with ±3 with 3 hard-coded imports, unless a called function
was itself an import.

5.4 Statistics

To ensure that our generator has a reasonable distribution, we have computed statistics
across 1000 generated modules. Our statistics covers the number of functions (min: 4,
avg: 8.93, max: 14), the total function length (min: 6, avg: 153.18, max: 648), element
segment length (min: 0, avg: 1.81, max: 94), number of globals (min: 0, avg: 333.74,
max: 9959), data segment length (min: 0, avg: 2.54, max: 87), number of print calls
(min 0, avg: 0.96, max 7), as well as percentages of the different instructions. Across
the latter, nop occurs most often with an average of 12.24% and callindir is the
most rare occurring with an average of 0.24%. We have added weights to the different
instructions in an attempt to even these.

5.5 Bugs found

At the time of writing we have found five bugs of which two were already known. Out
of the five bugs three led to a crash of SpiderMonkey and JavaScriptCore. Below we
describe the found counterexamples in more detail.

SpiderMonkey crash Our generator found a module which would crash Spider-
Monkey with a null pointer de-reference. The hand-shrunk test program is illustrated in
Fig. 1.4 We then created a minimal HTML document encapsulating the test program to
investigate how a full Firefox browser would react to it. Upon running the encapsulated
counterexample, the released Firefox version crashed the tab as illustrated in Fig. 1. We
reported the bug in BugZilla and the error was quickly confirmed and fixed.5

Internally, SpiderMonkey’s Wasm-engine creates a vector of “exported function”
objects, each with a (bit-packed) Boolean, indicating whether a function is marked ex-
plicitly as exported. In the test program the same function occurs both as a start func-
tion and in a table, causing it to occur twice in the vector, with only one occurrence
being marked explicitly. A subsequent removal of duplicates would however eliminate
the marked function entry, leaving only an unmarked one. At run-time the JIT-compiler
would then expect all explicitly exported functions to have an ’eager stub’, which would
be null in this case and thus cause a crash.

4 This was found, hand-shrunk, and reported before we developed the automatic shrinker.
5 https://bugzilla.mozilla.org/show_bug.cgi?id=1545086
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(module
(type $0 (func))
(type $1 (func (result f64)))
(func $0 (type 0))
(func $1
(type 1)
(loop (result f64)
(f64.const 0.0) (i32.const 0) (br_table 1) (call 0))

(br 0)
(unreachable))

(export "runf64" (func 1)))

Listing 4: Shrunk Wasm module causing JavaScriptCore to loop

The bug is particularly interesting, because SpiderMonkey already employs a fuzzer
based on libFuzzer to detect such issues. However the above issue had escaped it. We
believe this is due to the nature of the bug, being a “logical bug”. As such, a coverage-
driven fuzzer can visit all branches of the described code to achieve 100% coverage yet
still miss the bug. While anecdotal, this represents a real-world bug escaping a state-of-
the-art gray-box fuzzer yet being caught by a black-box QuickCheck generator.

JavaScriptCore br table difference Our generator and shrinker automatically
found the module in Listing 4 to exhibit different behavior on JavaScriptCore. The
other three engines would print 0 when running and printing the result of the ex-
ported function, whereas JavaScriptCore would loop. The cause for the difference is
the br_table 1 instruction, which takes a (in this case empty) table of labels and does
one of two things: (1) if the value on the stack is a valid index into the table it jumps
to that, otherwise (2) it jumps to the provided “fallback” label (1 above). With label 1
representing the outermost control-context (the surrounding function) this effectively
represents a return. JavaScriptCore would instead jump to label 0, effectively restarting
the surrounding loop. This was due to a bug in an underlying jump optimizer.

This was reported and quickly acknowledged and fixed.6 The reported test case
was additionally added to the suite of stress tests. Interestingly, multiple Safari users
reported this bug as websites using Wasm for font rendering were mis-rendered. While
also anecdotal, the example illustrates real-world benefit of our generator: The minimal
counterexample enabled developers to quickly identify and fix a real-world problem
hitting end users.

JavaScriptCore crash 1 Listing 5 shows another counterexample program we
found triggering a segmentation fault in JavaScriptCore. Upon further inspection, this
crash was only triggered in the nightly builds and thus the error had not made its way
into production. Again we reported the bug along with a sequence of repeatedly smaller
counterexamples, also establishing that the error was introduced by a commit between
versions 249479 and 250961 of the nightly builds.7 The error was never confirmed
though, and eventually the error was discovered and fixed by other means. We speculate
that our ability to file and report bugs has improved since this early bug report.

6 https://bugs.webkit.org/show_bug.cgi?id=209333
7 https://bugs.webkit.org/show_bug.cgi?id=202786
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(module
(type $0 (func (result f32)))
(global $0 i32 (i32.const 1))
(func $0
(type 0)
(f32.const 0.0)
(f32.const 0.0)
(i32.const 0)
(select)
(loop (result f32)
(f32.const 0.0) (global.get 0) (br_if 0))

(drop))
(export "runf32" (func 0)))

Listing 5: Module causing JavaScriptCore to crash

(module
(func (export "run")
(param i32)
(unreachable)
(tee_local 0)
(drop)))

Listing 6: Module erroneously rejected at compile-time by Chakra

JavaScriptCore crash 2 (known) We found another example that would crash
JavaScriptCore with the error FATAL: No color for %ftmp0, indicating an er-
ror in jsc’s underlying graph-coloring register allocator. In contrast, the other three en-
gines would all fail with a stack overflow. Again this was reported and acknowledged.8

This issue was limited to an earlier revision and had since then been resolved.
Chakra compile-time rejection (known) A different mismatch our test setup lo-

cated involved an unreachable and a tee_local instruction as illustrated in List-
ing 6. The module is erroneously rejected at compile-time by Chakra’s validator with
an error Can’t tee_local unreachable values, whereas the three other engines
throw a run-time error when trying to execute the unreachable instruction. Again this
was reported9 but the issue was already known.10 A fix was merged in Feb. 2019 but
still has not made its way into a release.

5.6 Inconsistencies in web-embedding

Imports aside, Wasm programs can only be observed for errors or non-termination. We
found three issues related to the web-embedding of Wasm.

Different stack overflow exceptions Our generator found a counterexample pro-
gram that would blow the call stack by indirectly calling itself. On V8 and JavaScript-
Core this would result in an exception instance of RangeError, on SpiderMonkey an
instance of InternalError, and on Chakra an instance of Error.

8 https://bugs.webkit.org/show_bug.cgi?id=209294
9 https://github.com/microsoft/ChakraCore/issues/6185

10 https://github.com/microsoft/ChakraCore/pull/5889
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Different data segment exceptions Similarly our generator produced an example
module with out-of-bounds data segment initializers, which would cause different er-
rors across engines: V8 and SpiderMonkey would throw a RuntimeError exception,
whereas Chakra and JavaScriptCore would throw a LinkError exception.

Different exception name properties JavaScriptCore has inconsistent name prop-
erties for JavaScript exceptions, which showed up when printing a detailed error for
comparison. Consider the following JavaScript program:

let e1 = new WebAssembly.CompileError("a compile error")
let e2 = new WebAssembly.LinkError("a link error")
let e3 = new WebAssembly.RuntimeError("a runtime error")
print(e1.name, e1);
print(e2.name, e2);
print(e3.name, e3);

On V8, SpiderMonkey, and Chakra this yields:

CompileError CompileError: a compile error
LinkError LinkError: a link error
RuntimeError RuntimeError: a runtime error

but on JavaScriptCore it yielded:

Error Error: a compile error (evaluating ’new [...]’)
Error Error: a link error (evaluating ’new [...]’)
Error Error: a runtime error (evaluating ’new [...]’)

The difference was reported but no acknowledgment has been received yet.11

5.7 Testing buggy behavior

Chakra’s different behavior on an unreachable tee_local is relatively often tested,
causing our tester to repeatedly rediscover and report it. Despite having its fix merged
into the master branch over a year ago, the fix has still not made it into a released ver-
sion. For this reason, we follow the approach of Hughes in the AUTOSAR project [14]
and adjust the test to the documented buggy behavior. We thus consider a Chakra error
about unreachable tee_local acceptable, despite differing from the other engines.

5.8 A performance experiment

We conducted a small experiment to measure the performance of the generator. The
experiment was conducted on a normally loaded MacBook Pro laptop. We invoked the
tester 6 times, each generating and comparing the output of 100 Wasm programs. Out
of the 6 invocations, 1 exhibited different behavior on the 9th generated program. After
19 shrinking steps and 78.6 sec a counterexample of ‘different data segment exceptions’
was reported. For the 5 successful invocations we counted 0–3 timeouts with each in-
vocation taking from 87.8 to 257.1 sec (avg: 158.7). We then reran the experiment with
the same randomization seeds, this time excluding a reference interpreter comparison.
We observed the same timeouts and the same counterexample, this time taking 79.9 sec.
The 5 successful invocations now took from 82.3 to 200.0 sec (avg: 131.7).
11 https://bugs.webkit.org/show_bug.cgi?id=204054
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6 Related work

The research literature is rich with contributions within program generation for test-
ing language processors. Purdom [21] originally suggested an algorithm for generating
a set of sentences to test parsers and context-free grammars. McKeeman [17] coined
the phrase differential testing (for software), to characterize his C compiler testing ap-
proach. This involved both a stochastic grammar associating weights to each produc-
tion, as well as a test-case reducer repeatedly applying simplifying heuristics.

Our work builds on Palka et al. [20], who tested the GHC Haskell compiler’s strict-
ness analyzer by generating random lambda terms. Their generator was structured as
a bottom-up reading of the typing rules, thus introducing the idea of using the typ-
ing rules as a specification for a generation procedure of well-typed terms. Like our
Wasm generator, their generator used backtracking to enable a higher success rate for
term generation. Midtgaard et al. [19] also built on Palka et al. [20] in their OCaml
program generation approach. To prevent generating programs with evaluation order
dependence, they suggest to structure a generator according to a type and effects sys-
tem with dedicated effect indicators. Reading the type and effects system bottom-up,
their generator was able to generate evaluation order independent programs and thus
find multiple bugs in OCaml compilers. Like us, they also developed a dedicated type-
preserving shrinker to shorten counterexample programs.

Alternatives to a randomized recursive generator exist, such as enumeration-based
program generation in the style of SmallCheck [22] and Bolzmann samplers to generate
typed lambda terms of an approximate size [5]. Both these approaches have currently
only been attempted on languages with relatively few language constructs.

Multiple C compilers have been tested by means of randomized testing. Yang et
al. introduced CSmith [27], a randomized test-case generator of C program inputs. They
used the generator to differentially test each produced program across various C com-
pilers to find differences in their outputs. CSmith generates C programs via a grammar
that describes a subset of the C language. It generates a C program with a top-level main
function that returns the result of the program via a checksum. The rest of the program
is randomly generated. CSmith compares the checksum output across the various com-
pilers. Yang et al. also had to work around the non-deterministic parts of the C language
when calculating the checksum. Like our generator, a program from CSmith can loop
infinitely and therefore Yang et al. run each program with a timeout.

Barany used differential testing to find missed compiler optimizations in C pro-
grams [4]. To do so, he generated random C programs and compared the optimised
program code generated by GCC, Clang, and CompCert. For the C program genera-
tion he used both CSmith [27] and ldrgen [3], a newly developed generator. The ldrgen
generator addresses CSmith’s tendency to generate dead code by introducing liveness
triples in the generation inference rules in addition to the typing context. At each gen-
eration step, the liveness of the instruction influences the result. Using this approach,
Barany identified multiple missed optimizations in all three tested compilers.

Le at al. [16] introduced equivalence modulo inputs (EMI) as an alternative com-
piler testing approach to differential testing. EMI defines the concept of equivalence of
programs on the same input. As a proof of concept they developed Orion to target C
compilers. Orion takes a test program as an input. First it extracts coverage information
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from the given program, and secondly it then generates EMI variants of the program.
Le et al. used the generated EMI variants to test GCC, LLVM and ICC. As a result of
their work, Le at al. have found and reported 147 unique bugs in GCC and LLVM.

Donaldson et al. [10] developed GLFuzz, thus using the concept of EMI to test
graphics shader compilers in graphics cards. For a given shader input to GLFuzz, GL-
Fuzz repeatedly applies a set of semantics-preserving transformations to the shader. The
resulting shader renders a similar image to the original, thereby allowing a comparison
between the original and the transformed shader’s result. When a significantly differ-
ent image is rendered, GLFuzz performs reduction (shrinking) to find a minimal set of
transformations that lead to a significant difference after rendering. With this approach,
Donaldson et al. found defects in all the GPU and driver configurations they tested.

Holler et al. [13] developed LangFuzz, a language-independent program generator.
LangFuzz requires a language grammar, sample source code of language implemen-
tations, and a test suite. In contrast to CSmith and our own generator which take a
generative approach, LangFuzz also utilizes a mutative approach to learn from the pro-
vided code samples and produce similar programs. LangFuzz first parses the supplied
code samples and builds up code fragments. Afterwards random code fragments are se-
lected and mutated. Finally the mutated program is run against the test suite. As a result
of the mutation process, there is a higher chance of finding bugs if the sample source
code base contains source code of known bugs. Holler et al. used LangFuzz to generate
both JavaScript and PHP programs and found multiple implementation bugs for both.

Watt formalized and verified the Wasm specification within Isabelle [25]. As part of
testing his formal model against Wasm engines, he conducted fuzz tests (property-based
tests). He used CSmith to generate C programs and then compiled them to Wasm using
the Binaryen toolchain [6]. As mentioned, this approach confines tests to the subset of
the Wasm language utilized by the Binaryen backend. In contrast, our generator is not
limited to such a subset. Consequently we have been able to find errors that span the
entire language specification. On the other hand, our generator benefits from both the
Wasm specification and Watt’s formalization of it to generate valid programs.

7 Conclusion

We have presented a stack-driven generator of WebAssembly programs. For each gen-
erated Wasm program we compare the reference interpreter’s output against each of
the four major browsers WebAssembly engines. In doing so, we have been able to find
both major and minor differences, including crashing bugs. To reduce the produced pro-
grams, we have developed a stack-driven shrinker. The resulting, minimal counterex-
ample programs allow our bug reports to be short and to the point. With WebAssembly
moving beyond client-side web development to new domains such as smart contracts
and blockchain, we believe our generator can be a useful tool to ensure agreement across
Wasm engines. We have released the source code of the generator under a BSD-license:

https://github.com/jmid/wasm-prop-tester
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