
SM2-TES: Functional Programming and

Property-Based Testing, Day 10

Jan Midtgaard

MMMI, SDU

Outline

2 / 34

Motivation

Intermezzo: Challenges in C Programming

Fuzz Testing

Fuzzing in the Bigger Picture

Motivation

Positive vs. negative testing

4 / 34

QuickCheck (as we’ve covered so far) is focused mainly
on positive testing: Testing that
systems/programs/libraries act as desired on valid input.

These days it is increasingly important to also perform
negative testing: Testing that systems/programs/libraries
also act meaningfully on invalid input.

Security issues typically fall in the second category:
SQL or JS injections, buffer overflows, . . .

Interestingly, a randomized testing approach termed
fuzz testing (or fuzzing) has evolved in parallel among
working software engineers.

Intermezzo: Challenges in C Programming

The challenges of C programming. . .

6 / 34

Writing proper C code is challenging:

� writing out-of-bounds in the heap or stack

� reading out-of-bounds in the heap or stack

� uninitialized reads

� use-after-free

� double freeing

� . . .

Historically compilers did not help catch these.

With a crash you would be lucky. . .

More likely: program sometimes exhibits weird behavior

Enter ASan

7 / 34

Google software engineers at some point designed
AddressSanitizer (ASan) Which was a game changer.

https://github.com/google/sanitizers/wiki/AddressSanitizer

ASan’s job is simply to detects memory errors

In a language like Java we’re spoiled and take, e.g.,
IndexOutOfBounds exceptions, for granted.

These days LLVM (and GCC) has ASan support built in.

ASan currently supports Linux, *BSD, Mac

Historically, a range of tools predated ASan:
Valgrind, Electric Fence, . . .

https://github.com/google/sanitizers/wiki/AddressSanitizer

An example C program

8 / 34

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p = malloc(5);

p[0] = ’h’;

p[1] = ’e’;

p[2] = ’l’;

p[3] = ’l’;

p[4] = ’o’;

p[5] = ’\0’; /* this index is out of bounds */

printf("%s\n",p);

return 0;

}

An example C program

8 / 34

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p = malloc(5);

p[0] = ’h’;

p[1] = ’e’;

p[2] = ’l’;

p[3] = ’l’;

p[4] = ’o’;

p[5] = ’\0’; /* this index is out of bounds */

printf("%s\n",p);

return 0;

}

$ clang -Wall -Wextra -pedantic -o example2 example2.c

$./example2

hello

$ Hm, it runs without any flags raised. . .

Same example compiled with ASan

9 / 34

$ clang -Wall -Wextra -pedantic -o example2 -fsanitize=address example2.c

$

Same example compiled with ASan

9 / 34

$ clang -Wall -Wextra -pedantic -o example2 -fsanitize=address example2.c

$./example2

===

==56166==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000b5 at pc

0x00010faa7df5 bp 0x7fff50158990 sp 0x7fff50158988

WRITE of size 1 at 0x6020000000b5 thread T0

#0 0x10faa7df4 in main (example2:x86_64+0x100000df4)

#1 0x7fffad83f234 in start (libdyld.dylib:x86_64+0x5234)

0x6020000000b5 is located 0 bytes to the right of 5-byte region [0x6020000000b0,0x6020000000b5)

allocated by thread T0 here:

#0 0x10fb04e9c in wrap_malloc (libclang_rt.asan_osx_dynamic.dylib:x86_64h+0x58e9c)

#1 0x10faa7bfa in main (example2:x86_64+0x100000bfa)

#2 0x7fffad83f234 in start (libdyld.dylib:x86_64+0x5234)

SUMMARY: AddressSanitizer: heap-buffer-overflow (example2:x86_64+0x100000df4) in main

Shadow bytes around the buggy address:

0x1c03ffffffc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x1c03ffffffd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x1c03ffffffe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x1c03fffffff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x1c0400000000: fa fa fd fd fa fa fd fd fa fa 00 04 fa fa 00 00

=>0x1c0400000010: fa fa 00 06 fa fa[05]fa fa fa fa fa fa fa fa fa

0x1c0400000020: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x1c0400000030: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x1c0400000040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x1c0400000050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

0x1c0400000060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

[...]

==56166==ABORTING

Abort trap: 6

ASan doesn’t catch everything

10 / 34

For example:
#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p = malloc(5);

char a = p[3]; /* Reading uninitialized memory */

printf("%c\n",a);

return 0;

}

https://github.com/google/sanitizers/wiki/MemorySanitizer

ASan doesn’t catch everything

10 / 34

For example:
#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p = malloc(5);

char a = p[3]; /* Reading uninitialized memory */

printf("%c\n",a);

return 0;

}

$ clang -Wall -Wextra -pedantic -o example5 -fsanitize=address example5.c

$

https://github.com/google/sanitizers/wiki/MemorySanitizer

ASan doesn’t catch everything

10 / 34

For example:
#include <stdio.h>

#include <stdlib.h>

int main()

{

char *p = malloc(5);

char a = p[3]; /* Reading uninitialized memory */

printf("%c\n",a);

return 0;

}

$ clang -Wall -Wextra -pedantic -o example5 -fsanitize=address example5.c

$./example5

?

$

This motivated the development of another tool:
MemorySanitizer (MSan)

https://github.com/google/sanitizers/wiki/MemorySanitizer

MSan only supports Linux x86_64 (for now)

https://github.com/google/sanitizers/wiki/MemorySanitizer

UndefinedBehaviorSanitizer

11 / 34

C and C++ have other causes of undefined behavior, e.g.:

� misaligned or null pointers

� integer overflow

� floating-point conversion overflow

UndefinedBehaviorSanitizer (UBSan) can catch these.

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

UndefinedBehaviorSanitizer

11 / 34

C and C++ have other causes of undefined behavior, e.g.:

� misaligned or null pointers

� integer overflow

� floating-point conversion overflow

UndefinedBehaviorSanitizer (UBSan) can catch these.

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

int main(int argc, char **argv) {

int k = 2147483647; /* max int */

k = k + argc; /* argument count is 1 without cmdline arguments */

return 0;

}

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

UndefinedBehaviorSanitizer

11 / 34

C and C++ have other causes of undefined behavior, e.g.:

� misaligned or null pointers

� integer overflow

� floating-point conversion overflow

UndefinedBehaviorSanitizer (UBSan) can catch these.

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

int main(int argc, char **argv) {

int k = 2147483647; /* max int */

k = k + argc; /* argument count is 1 without cmdline arguments */

return 0;

}

$ clang -o ubsan -fsanitize=undefined ubsan.c

$

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

UndefinedBehaviorSanitizer

11 / 34

C and C++ have other causes of undefined behavior, e.g.:

� misaligned or null pointers

� integer overflow

� floating-point conversion overflow

UndefinedBehaviorSanitizer (UBSan) can catch these.

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

int main(int argc, char **argv) {

int k = 2147483647; /* max int */

k = k + argc; /* argument count is 1 without cmdline arguments */

return 0;

}

$ clang -o ubsan -fsanitize=undefined ubsan.c

$./ubsan

ubsan.c:3:9: runtime error: signed integer overflow: 2147483647 + 1

cannot be represented in type ’int’

$

(LLVM supports UBSan on Android, Linux, BSD, and OSX)

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

ASan/MSan/UBSan and property-based testing

12 / 34

Bottom line:

ASan, MSan, and UBSan raise nice big red flags when
something bad happens.

They make a real difference
— also “just” within traditional unit testing

ASan/MSan/UBSan and property-based testing

12 / 34

Bottom line:

ASan, MSan, and UBSan raise nice big red flags when
something bad happens.

They make a real difference
— also “just” within traditional unit testing

But: they also lend themselves to automated testing with
the property “program runs without raising any flags”
(as an addition to “program runs without crashing”).

ASan/MSan/UBSan and property-based testing

12 / 34

Bottom line:

ASan, MSan, and UBSan raise nice big red flags when
something bad happens.

They make a real difference
— also “just” within traditional unit testing

But: they also lend themselves to automated testing with
the property “program runs without raising any flags”
(as an addition to “program runs without crashing”).

Q: Can a buggy program still pass such tests?
(hint: think devil’s advocate)

Fuzz Testing

Fuzz testing, historically (1/2)

14 / 34

“One of the authors was logged on to his workstation on a dial-up line
from home and the rain had affected the phone lines; there were
frequent spurious characters on the line. It was a race to see if he
could type a sensible sequence of characters before the noise
scrambled the command. This line noise was not surprising; but we
were surprised that these spurious characters were causing
programs to crash. These programs included a significant number of
basic operating system utilities. It is reasonable to expect that basic
utilities should not crash (“core dump”); on receiving unusual input,
they might exit with minimal error messages, but they should not
crash. This experience led us believe that there might be serious
bugs lurking in the systems that we regularly used.”

From “An Empirical Study of the Reliability of UNIX Utilities”,

Miller-Frederiksen-So, CACM’90

This experience led Miller to study how random input
affected common programs.

Fuzz was the name of their random character generator.

Fuzz testing, historically (2/2)

15 / 34

Miller’s fuzz testing research tell a fascinating tale:

1990: can crash 25-33% of utility programs on UNIX

1995: revisiting the experiment – still able to crash or
hang 25-40% of basic programs and X-Window
applications on a UNIX system

2000: Crash 21% and hang 24% of Windows NT
applications with random valid (keyboard/mouse)
input, could crash all applications with random Win32
messages

2006: Crash only 7% of command-line utilities, but
crashed 20/30 and hung 2/30 GUI applications on
MacOS

http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html

http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html

Fuzz testing, today

16 / 34

Miller et al.’s early fuzzers were black-box: they had no
domain knowledge of the application being tested.

Since then a new branch of white-box fuzzers have
come forward:

� American Fuzzy Lop (AFL) – named after a rabbit!

http://lcamtuf.coredump.cx/afl/

� libFuzzer http://llvm.org/docs/LibFuzzer.html

� . . .

Each of these fuzzers have an impressive trophy list of
discovered bugs.

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html

Coverage guided fuzzing

17 / 34

These fuzzers are coverage-guided, meaning you
compile your program with special build tools.

The build tools instrument the compiled code so that the
fuzzer

� can generate input which covers all possible paths

� can disregard input which tests paths already taken
thereby avoiding tests of the same paths over and
over

In addition they accept a corpus of typical test input files.

This will help point the fuzzer in the right direction, e.g.,
when the input format is tricky.

AFL, technically (1/2)

18 / 34

AFL’s coverage guiding works along these lines:

queue = load user’s test input;

while (queue not empty) {

input = queue.next();

input = trim(input);

for (new_input in mutate(input)) {

run program(new_input) with instrumentation;

if (run visits new program path) {

queue.add(new_input);

}

}

}

Input trimming (line 4) should cut down input size, but
preserve the measured program behavior.

Instrumentation tells if a new program path was taken.

AFL, technically (2/2)

19 / 34

Underneath the hood AFL uses a number of mutation
strategies to alter input:

� bitflips

� arithmetic

� known, “interesting” value overwrites

� a combined “havoc” strategy that combines bitflips,
overwrites, block deletion, block duplication, . . .

AFL, technically (2/2)

19 / 34

Underneath the hood AFL uses a number of mutation
strategies to alter input:

� bitflips

� arithmetic

� known, “interesting” value overwrites

� a combined “havoc” strategy that combines bitflips,
overwrites, block deletion, block duplication, . . .

In the words of the author: “ultimately, it’s never easy to
get from Set-Cookie: FOO=BAR to
Content-Length: -1 by randomly flipping bits.”

For this reason AFL also lets the user supply a
dictionary of domain-relevant tokens.

Example: Fuzzing ministat

20 / 34

In the past I’ve used the command line tool ministat

Given a text file in/chameleon of sample numbers
150

400

720

500

930

ministat will compute some basic statistics:
$./ministat in/chameleon

x in/chameleon

+--+

|x x x x x|

| |__________________________M____A______________________________| |

+--+

N Min Max Median Avg Stddev

x 5 150 930 500 540 299.08193

So, ministat seems like a nice candidate for fuzzing.

Installing and running AFL

21 / 34

First I installed AFL

Second, I downloaded the source code for ministat
from here: https://github.com/thorduri/ministat

For AFL to use ASan: export AFL_USE_ASAN=1

I compiled it with instrumentation: make CC=afl-clang

(this should create an executable called ministat)

Now I run AFL: afl-fuzz -i in -o out ./ministat @@

where @@ take the place of the input filename,
in is an testcase directory, and
out is a directory of AFL’s findings.

For programs expecting its input on the command line:
afl-fuzz -i in -o out program-path

https://github.com/thorduri/ministat

The rabbit runs. . .

22 / 34

After the fuzz

23 / 34

AFL continues to run. You can stop it with Ctrl-C.

After a successful run AFL has produced a number of
directories:

queue/ the queue of input data

crashes/ saved input data causing a crash

hangs/ saved input data causing a timeout

I tried both with and without ASan:

run 1: 1 crash in 1 minute (w/o ASan)
run 2: 5 crashes in 5 minutes (w/o ASan)
run 3: 3 crashes in 3 minutes (w/ASan)

afl-tmin: a separate shrinking tool (1/3)

24 / 34

AFL comes with afl-tmin:
a separate tool for test minimization (shrinking)

afl-tmin expects

� a problematic input file (as written by AFL)

� output file name (of shrunk output)

� name of the program under test

The tool takes multiple passes (each separated into
stages) until it cannot cut an input any further down. . .

afl-tmin: a separate shrinking tool (2/3)

25 / 34

$ afl-tmin -i out/crashes/id\:000000\,sig\:11\,src\:000000\,op\:havoc\,rep\:2 -o shrunk.txt ./ministat @@

afl-tmin 2.52b by <lcamtuf@google.com>

[+] Read 29 bytes from ’out/crashes/id:000000,sig:11,src:000000,op:havoc,rep:2’.

[*] Performing dry run (mem limit = 50 MB, timeout = 1000 ms)...

[+] Program exits with a signal, minimizing in crash mode.

[*] Stage #0: One-time block normalization...

[+] Block normalization complete, 21 bytes replaced.

[*] --- Pass #1 ---

[*] Stage #1: Removing blocks of data...

Block length = 1, remaining size = 29

[+] Block removal complete, 19 bytes deleted.

[*] Stage #2: Minimizing symbols (4 code points)...

[+] Symbol minimization finished, 0 symbols (0 bytes) replaced.

[*] Stage #3: Character minimization...

[+] Character minimization done, 0 bytes replaced.

[*] --- Pass #2 ---

[*] Stage #1: Removing blocks of data...

Block length = 1, remaining size = 10

[+] Block removal complete, 0 bytes deleted.

File size reduced by : 65.52% (to 10 bytes)

Characters simplified : 210.00%

Number of execs done : 52

Fruitless execs : path=26 crash=0 hang=0

[*] Writing output to ’shrunk.txt’...

[+] We’re done here. Have a nice day!

$

afl-tmin: a separate shrinking tool (3/3)

26 / 34

So afl-tmin managed to cut this crashing input:

$F

1E1500

400

720

500

930

afl-tmin: a separate shrinking tool (3/3)

26 / 34

So afl-tmin managed to cut this crashing input:

$F

1E1500

400

720

500

930

Down to this:

0

1E1000

0

without any domain-specific knowledge of ministat. . .

Not too bad :-)

Fuzzing in the Bigger Picture

Fuzz testing, continuously

28 / 34

Google has since created OSS-Fuzz:
– an effort to continuously fuzz open source software

https://github.com/google/oss-fuzz/

Projects in OSS-Fuzz will automatically have the project
fuzz tested, e.g., on source code changes.

Underneath the hood OSS-Fuzz uses a distributed
version of libFuzzer, named ClusterFuzz.

When I last checked OSS-Fuzz listed over 5000 bugs
attributed to this effort!

To encourage open source projects to incorporate
fuzzing, Google rewards (read: $$$) projects that do so:
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

https://github.com/google/oss-fuzz/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

A traditional distinction

29 / 34

Within traditional manual testing one typically
distinguishes between:
White-box testing: the tester has access to the source
code for the system under test

Black-box testing: the tester knows only the API (or
specification) of the system under test

Within automatized testing (QuickCheck + fuzzing)
this distinction is more blurred:

Who has access – machine or human?

A traditional distinction, revisited

30 / 34

With QuickCheck we can black-box test a system only
based on the API (or specification)

With QuickCheck we can white-box test a system, e.g.,
letting the tester study the source code to formulate
generators and properties.

With AFL one typically white-box tests a system, e.g., by
letting AFL inspect how input triggers different paths in
the code.

Fuzzing as property-based testing (1/2)

31 / 34

Michal Zalewski, the AFL author, also sees value in
testing for properties more broadly:

11) Going beyond crashes

Fuzzing is a wonderful and underutilized technique for discovering non-crashing

design and implementation errors, too. Quite a few interesting bugs have been

found by modifying the target programs to call abort() when, say:

- Two bignum libraries produce different outputs when given the same

fuzzer-generated input,

- An image library produces different outputs when asked to decode the same

input image several times in a row,

- A serialization / deserialization library fails to produce stable outputs

when iteratively serializing and deserializing fuzzer-supplied data,

- A compression library produces an output inconsistent with the input file

when asked to compress and then decompress a particular blob.

– From http://lcamtuf.coredump.cx/afl/README.txt

I recognize interesting properties (some well-known). . .

http://lcamtuf.coredump.cx/afl/README.txt

Fuzzing as property-based testing (2/2)

32 / 34

So, even though not designed for such, with little “driver
programs” that abort on a failed property, AFL can be
used for a form of property-based testing.

With afl-tmin we even have a shrinker!

Pro: you don’t have to write ad hoc generators

Con: you have little control over the generator

It is interesting how the two approaches are converging

QuickCheck Still focused on positive testing
How to generate invalid input in general, e.g., to find
security issues?

Fuzzing Still focused on negative testing
How to, e.g., build models, e.g., to test AUTOSAR?

Marrying QuickCheck and fuzz testing?

33 / 34

Crowbar for OCaml marries QuickCheck and fuzzing:

� Using a compiler patch it emits instr. code to realize
white-box generators for property-based testing

� It shows impressive abilities on the module-level

https://github.com/stedolan/crowbar

https://github.com/stedolan/crowbar

Marrying QuickCheck and fuzz testing?

33 / 34

Crowbar for OCaml marries QuickCheck and fuzzing:

� Using a compiler patch it emits instr. code to realize
white-box generators for property-based testing

� It shows impressive abilities on the module-level

https://github.com/stedolan/crowbar

Conventional (manual, human-in-the-loop) wisdom:
White-box testing is only practical up to a certain point.

Is this also true for automatized tests?

https://github.com/stedolan/crowbar

Marrying QuickCheck and fuzz testing?

33 / 34

Crowbar for OCaml marries QuickCheck and fuzzing:

� Using a compiler patch it emits instr. code to realize
white-box generators for property-based testing

� It shows impressive abilities on the module-level

https://github.com/stedolan/crowbar

Conventional (manual, human-in-the-loop) wisdom:
White-box testing is only practical up to a certain point.

Is this also true for automatized tests?

Perhaps once “lower-level properties” have been
established for modules individually with white-box
generators, one should switch to black-box generators
and higher-level properties for integration testing?

https://github.com/stedolan/crowbar

Summary and conclusion

34 / 34

Today we’ve looked at several things:

� the challenges of C programming, memory-wise

� ASan, MSan, and UBSan that can help address
these challenges

� fuzz testing,

– historically,

– presently (AFL, libFuzzer, . . .),

– technically (coverage guiding, . . .)

� compared fuzzing with property-based testing

	Outline
	Motivation
	Positive vs. negative testing

	Intermezzo: Challenges in C Programming
	The challenges of C programming…
	Enter ASan
	An example C program
	Same example compiled with ASan
	ASan doesn't catch everything
	UndefinedBehaviorSanitizer
	ASan/MSan/UBSan and property-based testing

	Fuzz Testing
	Fuzz testing, historically (1/2)
	Fuzz testing, historically (2/2)
	Fuzz testing, today
	Coverage guided fuzzing
	AFL, technically (1/2)
	AFL, technically (2/2)
	Example: Fuzzing ministat
	Installing and running AFL
	The rabbit runs…
	After the fuzz
	afl-tmin: a separate shrinking tool (1/3)
	afl-tmin: a separate shrinking tool (2/3)
	afl-tmin: a separate shrinking tool (3/3)

	Fuzzing in the Bigger Picture
	Fuzz testing, continuously
	A traditional distinction
	A traditional distinction, revisited
	Fuzzing as property-based testing (1/2)
	Fuzzing as property-based testing (2/2)
	Marrying QuickCheck and fuzz testing?
	Summary and conclusion

