
02913 Advanced Analysis Techniques

QuickCheck, Day 2

Jan Midtgaard

DTU Compute

2 / 36

Yesterday’s exercises

Outline

3 / 36

OCaml recap

More OCaml

QuickChecking with QCheck

Testing for properties

Classification

OCaml recap

OCaml recap

5 / 36

� By now you’ve installed OCaml and written/sent your
first expression to the toplevel

� Yesterday we wrote some basic OCaml expressions
following the below grammar:

topdecl ::= exp

| let id id . . . id = exp

exp ::= id

| value

| exp+ exp | exp- exp | . . . | - exp

| fun id . . . id -> exp

| exp exp . . . exp

| if exp then exp else exp

| (exp)

| let id id . . . id = exp in exp

| match exp with | pat -> exp | . . .| pat -> exp

Read-eval-print loop vs .ml files

6 / 36

In the screen casts you saw

� an example of writing a QCheck QuickCheck test
directly in the REPL loop

(we finish these topdecls with ;;)

� the same example written to an .ml file and
compiled with ocamlbuild (here ;; is not required)

However: toplevel expressions in a file should be
separated by ;; to distinguish them from calls:

definition ::= let id id . . . id = exp

topdecls ::= (exp | definition) (;; exp | [;;] definition)∗

More OCaml

Tuples

8 / 36

Tuples are one way to combine types to build new ones:

type point3d = int * int * int

which declares point3d as a short hand for int triples

OCaml will infer tuple types (they don’t need to be
declared):

let mypair = (1,2);;

val mypair : int * int = (1, 2)

One can project data from pairs with fst and snd:

snd mypair;;

- : int = 2

Tuple matching

9 / 36

One can also pattern match on tuple types using let:

let distance_from_origo p =

let (x,y) = p in

let sqr_dist = (x * x) + (y * y) in

sqrt (float_of_int sqr_dist)

for which OCaml infers the type:
val distance_from_origo : int * int -> float = <fun>

Alternatively one can pattern match directly in the
function header:

let distance_from_origo’ (x,y) =

let sqr_dist = (x * x) + (y * y) in

sqrt (float_of_int sqr_dist)

The simple.ml file from the screen cast also does this

Lists

10 / 36

Lists are created inductively from the empty list [] and
the cons operator ::

let mylist = 1::2::3::[];;

val mylist : int list = [1; 2; 3]

In Java we would (probably) write this as
List<Integer>

As a short hand one can also write list literals with
square brackets and semicolon as element separator:

let mylist’ = [0;1;2;3];;

val mylist’ : int list = [0; 1; 2; 3]

One can concatenate lists with @:

mylist@mylist;;

- : int list = [1; 2; 3; 1; 2; 3]

Lists, polymorphically

11 / 36

We can now write structurally recursive functions over
lists:

let rec length l = match l with

| [] -> 0

| elem::elems -> 1 + length elems

For which OCaml will infer the polymorphic type:

val length : ’a list -> int = <fun>

The corresponding generic Java method would accept a
List<X> and return a Java int

Labeled arguments

12 / 36

OCaml supports labeled (named) arguments

The syntax for the receiver (the formal parameters) is:

let id ~label:pattern ... ~label:pattern = exp

Example: let mymod ~num:n ~modulus:m = n mod m

Labeled arguments

12 / 36

OCaml supports labeled (named) arguments

The syntax for the receiver (the formal parameters) is:

let id ~label:pattern ... ~label:pattern = exp

Example: let mymod ~num:n ~modulus:m = n mod m

A short-hand is available for arguments that don’t need
pattern matching (labels and patterns agree):

let id ~label ... ~label = exp

Example: let mymod ~num ~modulus = num mod modulus

Labeled arguments

12 / 36

OCaml supports labeled (named) arguments

The syntax for the receiver (the formal parameters) is:

let id ~label:pattern ... ~label:pattern = exp

Example: let mymod ~num:n ~modulus:m = n mod m

A short-hand is available for arguments that don’t need
pattern matching (labels and patterns agree):

let id ~label ... ~label = exp

Example: let mymod ~num ~modulus = num mod modulus

Functions are also invoked with labels
id ~label ... ~label in no particular order:

mymod ~modulus:4 ~num:10;;

- : int = 2

Optional arguments

13 / 36

In addition OCaml supports optional arguments:

arguments which may or may not be supplied.

let id ?(label = exp) ... ?(label = exp) = exp

When absent the receiver assumes a default value

For example:

let distance ?(src = (0,0)) (tx,ty) =

let (sx,sy) = src in

let xdiff = tx - sx in

let ydiff = ty - sy in

let sqr_dist = (xdiff*xdiff) + (ydiff*ydiff) in

sqrt (float_of_int sqr_dist)

which we can invoke as a labeled argument:

distance ~src:(1,1) (4,5);;

- : float = 5.

The standard library

14 / 36

� OCaml includes a decent standard library:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/

� All bindings in the module Pervasives are available
in the top-level.

� Many of the functions we have covered (and more)
come from Pervasives - so have a look :-)

� Note: There are at least 3 other competing “standard
libraries”. We’ll stick to the one from the standard
distribution

http://caml.inria.fr/pub/docs/manual-ocaml/libref/

QuickChecking with QCheck

From one to many tests

16 / 36

Yesterday we saw how to write one test:

let mytest =

Test.make float (fun f -> floor f <= f)

Most often we want to check more than one thing

We can do so by writing individual tests:

let floor_test =

Test.make float (fun f -> floor f <= f)

let ceil_test =

Test.make float (fun f -> f <= ceil f)

and running them all:

let _ = QCheck_runner.run_tests

[floor_test;

ceil_test]

Naming tests and increasing test iterations

17 / 36

Both Test.make and QCheck_runner.run_tests

support a range of labeled, optional arguments. In
particular:

� ~name:str sets the title of a test to the string str

� ~count:n sets the number of test runs to n

� . . .

while option ~verbose:true makes the test run a bit
more informative. For example:

let floor_test = Test.make ~name:"floor test" ~count:300

float (fun f -> floor f <= f) in

QCheck_runner.run_tests ~verbose:true [floor_test];;

law floor test: 300 relevant cases (300 total)

success (ran 1 tests)

- : int = 0

#

Running QCheck from the command line

18 / 36

QCheck provides QCheck_runner.run_tests_main
as an alternative way to drive a test suite:

let floor_test =

Test.make float (fun f -> floor f <= f)

let ceil_test =

Test.make float (fun f -> f <= ceil f)

;; (* important to distinguish the last call

from additional arguments to Test.make *)

QCheck_runner.run_tests_main [floor_test; ceil_test]

By default this runs non-verbose, but the command-line
argument --verbose has the same effect as passing
~verbose:true to QCheck_runner.run_tests

In addition it accepts --seed for the randomization

A QCheck note on iteration count

19 / 36

In QCheck the ~count:n parameter is bounded
upwards by the option ~max_gen:m which may be a bit
surprising:

let floor_test = Test.make ~count:10000 ~max_gen:1000

float (fun f -> floor f <= f) in

QCheck_runner.run_tests ~verbose:true [floor_test];;

law <test>: 1000 relevant cases (1000 total)

success (ran 1 tests)

If specified, it is a good idea to supply a ~max_gen

option greater than the ~count option.

The default value for the optional parameter ~max_gen
is the value of ~count + 200

The default value for ~count is 100

Testing properties with preconditions (1/3)

20 / 36

In QCheck with ==> we can also express properties
involving a precondition:

let is_even i = (i mod 2 = 0)

let is_odd i = (i mod 2 = 1)

let succ_test =

Test.make ~name:"succ test"

pos_int (fun i -> (is_even i) ==> (is_odd (succ i)))

Not all generated input will satisfy the precondition:

law succ test: 100 relevant cases (206 total)

Alternatively we can express the implication via the
well-known encoding [p =⇒ q] ⇐⇒ [¬p ∨ q]
but doing so loses track of failed preconditions:

law succ test’: 100 relevant cases (100 total)

Q: does this lead to fewer or more tests of succ?

Testing properties with preconditions (2/3)

21 / 36

In using ==> we need to generate more input for
enough to satisfy the precondition.

For this reason the default max_gen is 300 for the
default count of 100 (a factor 3).

Setting max_gen to, e.g., 200 will limit the number of
tests further:

law succ test: 97 relevant cases (200 total)

When generation is expensive you may want to limit it

Testing properties with preconditions (3/3)

22 / 36

Be careful that ==> evaluates its arguments eagerly

As a consequence side-effects on the right-hand-side of
==> are not guarded by the left-hand-side

For example:

Test.make ~name:"div test"

small_int

(fun i -> (i <> 0) ==> (42 / i >= 0))

will thus (surprisingly) fail:

test ‘div test‘ raised exception ‘Division_by_zero‘ on ‘0‘

Note: this is not a listed as a failed property but as an
internal failure

Testing for properties

Properties and generators

24 / 36

� We’ve seen how to write properties as Boolean
valued functions and

� implication properties using QCheck’s builtin ==>

� We’ve also seen some builtin generators

– float

– pos_int, small_int

– . . .

� There are many more (see the API):

http://c-cube.github.io/qcheck/0.5/

http://c-cube.github.io/qcheck/0.5/

Which properties?

25 / 36

So far, we’ve seen examples of testing immediate
properties of functions (floor, succ, . . .)

Admittedly, these properties are not always easy to
come up with :-/

Sometimes we are interested in testing agreement
between two implementations:

� an initial version vs.

� a revised/optimized version

For example: a data structure with poor and improved
O-bounds on time/space complexity

Testing pairs (1/2)

26 / 36

Suppose we write a recursive version of multiplication
by repeated shifting:

let rec mymult n m = match n,m with

| 0,_ -> 0

| _,0 -> 0

| _,_ ->

let tmp = mymult (n lsr 1) m in

if n land 1 = 0

then (tmp lsl 1)

else (tmp lsl 1) + m

Hopefully this version agrees with the builtin *:

∀n,m. mymult n m = n ∗m

To test it, we need to generate pairs of integers

Testing pairs (2/2)

27 / 36

We can do so using

pair : ’a arbitrary -> ’b arbitrary -> (’a * ’b) arbitrary

which forms a pair generator out of a pair of generators

(read ’a arbitrary as “generator of ’as”)

With pair in hand the test is straightforward:

Test.make ~name:"mymult,* agreement"

(pair int int) (fun (n,m) -> mymult n m = n * m)

. . . and the two operations seems to agree:

law mymult,* agreement: 100 relevant cases (100 total)

Testing lists: type parameters (1/3)

28 / 36

List.rev has type ’a list -> ’a list

(for any ’a). Suppose we want to test 3 properties of it:

∀x. List.rev [x] = [x]

∀xs. List.rev(List.rev xs) = xs

∀xs, ys. List.rev(xs@ys) = (List.rev ys)@(List.rev xs)

We have to test it for a concrete type parameter, e.g.,
int.

The first property is now straightforward to write:

let rev_sgl_test =

Test.make ~name:"rev single"

int (fun x -> List.rev [x] = [x])

Testing lists: generators (2/3)

29 / 36

We need to generate arbitrary lists to test the second
property ∀xs. List.rev(List.rev xs) = xs.

We can write one using a builtin generator:

list : ’a arbitrary -> ’a list arbitrary

where the parameter generates the elements

The second property can now be tested as follows:

let rev_twice_test =

Test.make ~name:"rev twice"

(list int)

(fun xs -> List.rev (List.rev xs) = xs)

Testing lists: generating pairs/tuples (3/3)

30 / 36

To test the third property

∀xs, ys. List.rev(xs@ys) = (List.rev ys)@(List.rev xs)

we need to generate arbitrary pairs of lists.

Again we do so using pair:

let rev_concat_test =

Test.make ~name:"rev concat"

(pair (list int) (list int))

(fun (xs,ys) ->

List.rev (xs @ ys)

= (List.rev ys) @ (List.rev xs))

Similarly triple can form triple generators, . . .

Classification

Classification – Why?

32 / 36

QCheck lets us check a property across many inputs

How can we be sure that these input are non-trivial,
e.g., that they are not limited to a narrow corner of the
input space?

Classifiers lets us inspect the generated inputs

In QCheck we can classify elements by string coercion:

Concretely this is implemented as a transformer of
generators:

set_collect : (’a -> string) -> ’a arbitrary -> ’a arbitrary

where the first parameter is the classifier and the
second parameter is the generator we want to
instrument

Classifying generated numbers (1/2)

33 / 36

Suppose we want to observe the inputs to mymult:

let sign n = if n=0 then "zero" else

if n>0 then "pos" else "neg" in

let pair_gen =

set_collect

(fun (n,m) -> sign n ^ ", " ^ sign m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which gives us

law mymult,* agreement: 100 relevant cases (100 total)

neg, neg: 23 cases

pos, pos: 24 cases

neg, pos: 27 cases

pos, neg: 26 cases

Classifying generated numbers (2/2)

34 / 36

Suppose we want to observe the distribution more
carefully we can write a digit-counting classifier:

let digits n =

let n = if n<0 then (-n) else n in

string_of_float (ceil (log10 (float_of_int n))) in

let pair_gen =

set_collect

(fun (n,m) -> digits n ^ ", " ^ digits m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which suggests that the builtin generator prefers big ints:

law mymult,* agreement: 100 relevant cases (100 total)

17., 19.: 2 cases

19., 18.: 16 cases

18., 19.: 15 cases

19., 19.: 60 cases

18., 18.: 7 cases

Classifying generated numbers (2/2)

34 / 36

Suppose we want to observe the distribution more
carefully we can write a digit-counting classifier:

let digits n =

let n = if n<0 then (-n) else n in

string_of_float (ceil (log10 (float_of_int n))) in

let pair_gen =

set_collect

(fun (n,m) -> digits n ^ ", " ^ digits m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which suggests that the builtin generator prefers big ints:

law mymult,* agreement: 100 relevant cases (100 total)

17., 19.: 2 cases

19., 18.: 16 cases

18., 19.: 15 cases

19., 19.: 60 cases

18., 18.: 7 cases

Q: does this appear

to be a uniform distribution?

Classifying lists

35 / 36

We can classify generated lists, e.g., on their length:

let list_gen =

set_collect

(fun xs -> "len: " ^ string_of_int (List.length xs))

(list (int_range 0 100)) in

Test.make ~name:"rev twice"

list_gen (fun xs -> List.rev (List.rev xs) = xs)

which gives rise to an output like:

law rev twice: 100 relevant cases (100 total)

len: 91: 2 cases

len: 34: 1 cases

len: 3: 7 cases

len: 817: 1 cases

len: 32: 1 cases

len: 76: 1 cases

len: 6: 3 cases

len: 61: 2 cases

len: 27: 1 cases

len: 17: 1 cases

len: 707: 2 cases

Classifying lists

35 / 36

We can classify generated lists, e.g., on their length:

let list_gen =

set_collect

(fun xs -> "len: " ^ string_of_int (List.length xs))

(list (int_range 0 100)) in

Test.make ~name:"rev twice"

list_gen (fun xs -> List.rev (List.rev xs) = xs)

which gives rise to an output like:

law rev twice: 100 relevant cases (100 total)

len: 91: 2 cases

len: 34: 1 cases

len: 3: 7 cases

len: 817: 1 cases

len: 32: 1 cases

len: 76: 1 cases

len: 6: 3 cases

len: 61: 2 cases

len: 27: 1 cases

len: 17: 1 cases

len: 707: 2 cases

Take away:

a mixed distribution

Summary

36 / 36

We can

� write general properties (in QCheck)

– as Boolean-valued functions

– with preconditions using ==>

� formulate generators

– based on builtin ones int, pos_int, float,

– for tuples with pair, triple,. . .

– for lists with list

� observe our tests with classifiers

	
	Outline
	OCaml recap
	OCaml recap
	Read-eval-print loop vs .ml files

	More OCaml
	Tuples
	Tuple matching
	Lists
	Lists, polymorphically
	Labeled arguments
	Optional arguments
	The standard library

	QuickChecking with QCheck
	From one to many tests
	Naming tests and increasing test iterations
	Running QCheck from the command line
	A QCheck note on iteration count
	Testing properties with preconditions (1/3)
	Testing properties with preconditions (2/3)
	Testing properties with preconditions (3/3)

	Testing for properties
	Properties and generators
	Which properties?
	Testing pairs (1/2)
	Testing pairs (2/2)
	Testing lists: type parameters (1/3)
	Testing lists: generators (2/3)
	Testing lists: generating pairs/tuples (3/3)

	Classification
	Classification – Why?
	Classifying generated numbers (1/2)
	Classifying generated numbers (2/2)
	Classifying lists
	Summary

