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� By now you’ve installed OCaml and written/sent your
first expression to the toplevel

� Yesterday we wrote some basic OCaml expressions
following the below grammar:

topdecl ::= exp

| let id id . . . id = exp

exp ::= id

| value

| exp+ exp | exp- exp | . . . | - exp

| fun id . . . id -> exp

| exp exp . . . exp

| if exp then exp else exp

| (exp)

| let id id . . . id = exp in exp

| match exp with | pat -> exp | . . .| pat -> exp



Read-eval-print loop vs .ml files
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In the screen casts you saw

� an example of writing a QCheck QuickCheck test
directly in the REPL loop

(we finish these topdecls with ;;)

� the same example written to an .ml file and
compiled with ocamlbuild (here ;; is not required)

However: toplevel expressions in a file should be
separated by ;; to distinguish them from calls:

definition ::= let id id . . . id = exp

topdecls ::= (exp | definition) ( ;; exp | [;;] definition)∗



More OCaml



Tuples
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Tuples are one way to combine types to build new ones:

type point3d = int * int * int

which declares point3d as a short hand for int triples

OCaml will infer tuple types (they don’t need to be
declared):

# let mypair = (1,2);;

val mypair : int * int = (1, 2)

One can project data from pairs with fst and snd:

# snd mypair;;

- : int = 2



Tuple matching
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One can also pattern match on tuple types using let:

let distance_from_origo p =

let (x,y) = p in

let sqr_dist = (x * x) + (y * y) in

sqrt (float_of_int sqr_dist)

for which OCaml infers the type:
val distance_from_origo : int * int -> float = <fun>

Alternatively one can pattern match directly in the
function header:

let distance_from_origo’ (x,y) =

let sqr_dist = (x * x) + (y * y) in

sqrt (float_of_int sqr_dist)

The simple.ml file from the screen cast also does this



Lists
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Lists are created inductively from the empty list [] and
the cons operator ::

# let mylist = 1::2::3::[];;

val mylist : int list = [1; 2; 3]

In Java we would (probably) write this as
List<Integer>

As a short hand one can also write list literals with
square brackets and semicolon as element separator:

# let mylist’ = [0;1;2;3];;

val mylist’ : int list = [0; 1; 2; 3]

One can concatenate lists with @:

# mylist@mylist;;

- : int list = [1; 2; 3; 1; 2; 3]



Lists, polymorphically
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We can now write structurally recursive functions over
lists:

let rec length l = match l with

| [] -> 0

| elem::elems -> 1 + length elems

For which OCaml will infer the polymorphic type:

val length : ’a list -> int = <fun>

The corresponding generic Java method would accept a
List<X> and return a Java int



Labeled arguments
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OCaml supports labeled (named) arguments

The syntax for the receiver (the formal parameters) is:

let id ~label:pattern ... ~label:pattern = exp

Example: let mymod ~num:n ~modulus:m = n mod m
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A short-hand is available for arguments that don’t need
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OCaml supports labeled (named) arguments

The syntax for the receiver (the formal parameters) is:

let id ~label:pattern ... ~label:pattern = exp

Example: let mymod ~num:n ~modulus:m = n mod m

A short-hand is available for arguments that don’t need
pattern matching (labels and patterns agree):

let id ~label ... ~label = exp

Example: let mymod ~num ~modulus = num mod modulus

Functions are also invoked with labels
id ~label ... ~label in no particular order:

# mymod ~modulus:4 ~num:10;;

- : int = 2



Optional arguments
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In addition OCaml supports optional arguments:

arguments which may or may not be supplied.

let id ?(label = exp) ... ?(label = exp) = exp

When absent the receiver assumes a default value

For example:

let distance ?(src = (0,0)) (tx,ty) =

let (sx,sy) = src in

let xdiff = tx - sx in

let ydiff = ty - sy in

let sqr_dist = (xdiff*xdiff) + (ydiff*ydiff) in

sqrt (float_of_int sqr_dist)

which we can invoke as a labeled argument:

# distance ~src:(1,1) (4,5);;

- : float = 5.



The standard library
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� OCaml includes a decent standard library:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/

� All bindings in the module Pervasives are available
in the top-level.

� Many of the functions we have covered (and more)
come from Pervasives - so have a look :-)

� Note: There are at least 3 other competing “standard
libraries”. We’ll stick to the one from the standard
distribution

http://caml.inria.fr/pub/docs/manual-ocaml/libref/


QuickChecking with QCheck



From one to many tests

16 / 36

Yesterday we saw how to write one test:

let mytest =

Test.make float (fun f -> floor f <= f)

Most often we want to check more than one thing

We can do so by writing individual tests:

let floor_test =

Test.make float (fun f -> floor f <= f)

let ceil_test =

Test.make float (fun f -> f <= ceil f)

and running them all:

let _ = QCheck_runner.run_tests

[floor_test;

ceil_test]



Naming tests and increasing test iterations
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Both Test.make and QCheck_runner.run_tests

support a range of labeled, optional arguments. In
particular:

� ~name:str sets the title of a test to the string str

� ~count:n sets the number of test runs to n

� . . .

while option ~verbose:true makes the test run a bit
more informative. For example:

# let floor_test = Test.make ~name:"floor test" ~count:300

float (fun f -> floor f <= f) in

QCheck_runner.run_tests ~verbose:true [floor_test];;

law floor test: 300 relevant cases (300 total)

success (ran 1 tests)

- : int = 0

#



Running QCheck from the command line
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QCheck provides QCheck_runner.run_tests_main
as an alternative way to drive a test suite:

let floor_test =

Test.make float (fun f -> floor f <= f)

let ceil_test =

Test.make float (fun f -> f <= ceil f)

;; (* important to distinguish the last call

from additional arguments to Test.make *)

QCheck_runner.run_tests_main [floor_test; ceil_test]

By default this runs non-verbose, but the command-line
argument --verbose has the same effect as passing
~verbose:true to QCheck_runner.run_tests

In addition it accepts --seed for the randomization



A QCheck note on iteration count
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In QCheck the ~count:n parameter is bounded
upwards by the option ~max_gen:m which may be a bit
surprising:

# let floor_test = Test.make ~count:10000 ~max_gen:1000

float (fun f -> floor f <= f) in

QCheck_runner.run_tests ~verbose:true [floor_test];;

law <test>: 1000 relevant cases (1000 total)

success (ran 1 tests)

If specified, it is a good idea to supply a ~max_gen

option greater than the ~count option.

The default value for the optional parameter ~max_gen
is the value of ~count + 200

The default value for ~count is 100



Testing properties with preconditions (1/3)
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In QCheck with ==> we can also express properties
involving a precondition:

let is_even i = (i mod 2 = 0)

let is_odd i = (i mod 2 = 1)

let succ_test =

Test.make ~name:"succ test"

pos_int (fun i -> (is_even i) ==> (is_odd (succ i)))

Not all generated input will satisfy the precondition:

law succ test: 100 relevant cases (206 total)

Alternatively we can express the implication via the
well-known encoding [p =⇒ q] ⇐⇒ [¬p ∨ q]
but doing so loses track of failed preconditions:

law succ test’: 100 relevant cases (100 total)

Q: does this lead to fewer or more tests of succ?



Testing properties with preconditions (2/3)
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In using ==> we need to generate more input for
enough to satisfy the precondition.

For this reason the default max_gen is 300 for the
default count of 100 (a factor 3).

Setting max_gen to, e.g., 200 will limit the number of
tests further:

law succ test: 97 relevant cases (200 total)

When generation is expensive you may want to limit it



Testing properties with preconditions (3/3)
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Be careful that ==> evaluates its arguments eagerly

As a consequence side-effects on the right-hand-side of
==> are not guarded by the left-hand-side

For example:

Test.make ~name:"div test"

small_int

(fun i -> (i <> 0) ==> (42 / i >= 0))

will thus (surprisingly) fail:

test ‘div test‘ raised exception ‘Division_by_zero‘ on ‘0‘

Note: this is not a listed as a failed property but as an
internal failure



Testing for properties



Properties and generators
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� We’ve seen how to write properties as Boolean
valued functions and

� implication properties using QCheck’s builtin ==>

� We’ve also seen some builtin generators

– float

– pos_int, small_int

– . . .

� There are many more (see the API):

http://c-cube.github.io/qcheck/0.5/

http://c-cube.github.io/qcheck/0.5/


Which properties?
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So far, we’ve seen examples of testing immediate
properties of functions (floor, succ, . . . )

Admittedly, these properties are not always easy to
come up with :-/

Sometimes we are interested in testing agreement
between two implementations:

� an initial version vs.

� a revised/optimized version

For example: a data structure with poor and improved
O-bounds on time/space complexity



Testing pairs (1/2)
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Suppose we write a recursive version of multiplication
by repeated shifting:

let rec mymult n m = match n,m with

| 0,_ -> 0

| _,0 -> 0

| _,_ ->

let tmp = mymult (n lsr 1) m in

if n land 1 = 0

then (tmp lsl 1)

else (tmp lsl 1) + m

Hopefully this version agrees with the builtin *:

∀n,m. mymult n m = n ∗m

To test it, we need to generate pairs of integers



Testing pairs (2/2)
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We can do so using

pair : ’a arbitrary -> ’b arbitrary -> (’a * ’b) arbitrary

which forms a pair generator out of a pair of generators

(read ’a arbitrary as “generator of ’as”)

With pair in hand the test is straightforward:

Test.make ~name:"mymult,* agreement"

(pair int int) (fun (n,m) -> mymult n m = n * m)

. . . and the two operations seems to agree:

law mymult,* agreement: 100 relevant cases (100 total)



Testing lists: type parameters (1/3)
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List.rev has type ’a list -> ’a list

(for any ’a). Suppose we want to test 3 properties of it:

∀x. List.rev [x] = [x]

∀xs. List.rev(List.rev xs) = xs

∀xs, ys. List.rev(xs@ys) = (List.rev ys)@(List.rev xs)

We have to test it for a concrete type parameter, e.g.,
int.

The first property is now straightforward to write:

let rev_sgl_test =

Test.make ~name:"rev single"

int (fun x -> List.rev [x] = [x])



Testing lists: generators (2/3)

29 / 36

We need to generate arbitrary lists to test the second
property ∀xs. List.rev(List.rev xs) = xs.

We can write one using a builtin generator:

list : ’a arbitrary -> ’a list arbitrary

where the parameter generates the elements

The second property can now be tested as follows:

let rev_twice_test =

Test.make ~name:"rev twice"

(list int)

(fun xs -> List.rev (List.rev xs) = xs)



Testing lists: generating pairs/tuples (3/3)
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To test the third property

∀xs, ys. List.rev(xs@ys) = (List.rev ys)@(List.rev xs)

we need to generate arbitrary pairs of lists.

Again we do so using pair:

let rev_concat_test =

Test.make ~name:"rev concat"

(pair (list int) (list int))

(fun (xs,ys) ->

List.rev (xs @ ys)

= (List.rev ys) @ (List.rev xs))

Similarly triple can form triple generators, . . .



Classification



Classification – Why?
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QCheck lets us check a property across many inputs

How can we be sure that these input are non-trivial,
e.g., that they are not limited to a narrow corner of the
input space?

Classifiers lets us inspect the generated inputs

In QCheck we can classify elements by string coercion:

Concretely this is implemented as a transformer of
generators:

set_collect : (’a -> string) -> ’a arbitrary -> ’a arbitrary

where the first parameter is the classifier and the
second parameter is the generator we want to
instrument



Classifying generated numbers (1/2)
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Suppose we want to observe the inputs to mymult:

let sign n = if n=0 then "zero" else

if n>0 then "pos" else "neg" in

let pair_gen =

set_collect

(fun (n,m) -> sign n ^ ", " ^ sign m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which gives us

law mymult,* agreement: 100 relevant cases (100 total)

neg, neg: 23 cases

pos, pos: 24 cases

neg, pos: 27 cases

pos, neg: 26 cases



Classifying generated numbers (2/2)
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Suppose we want to observe the distribution more
carefully we can write a digit-counting classifier:

let digits n =

let n = if n<0 then (-n) else n in

string_of_float (ceil (log10 (float_of_int n))) in

let pair_gen =

set_collect

(fun (n,m) -> digits n ^ ", " ^ digits m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which suggests that the builtin generator prefers big ints:

law mymult,* agreement: 100 relevant cases (100 total)

17., 19.: 2 cases

19., 18.: 16 cases

18., 19.: 15 cases

19., 19.: 60 cases

18., 18.: 7 cases



Classifying generated numbers (2/2)

34 / 36

Suppose we want to observe the distribution more
carefully we can write a digit-counting classifier:

let digits n =

let n = if n<0 then (-n) else n in

string_of_float (ceil (log10 (float_of_int n))) in

let pair_gen =

set_collect

(fun (n,m) -> digits n ^ ", " ^ digits m)

(pair int int) in

Test.make ~name:"mymult,* agreement"

pair_gen (fun (n,m) -> mymult n m = n * m)

which suggests that the builtin generator prefers big ints:

law mymult,* agreement: 100 relevant cases (100 total)

17., 19.: 2 cases

19., 18.: 16 cases

18., 19.: 15 cases

19., 19.: 60 cases

18., 18.: 7 cases

Q: does this appear

to be a uniform distribution?



Classifying lists
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We can classify generated lists, e.g., on their length:

let list_gen =

set_collect

(fun xs -> "len: " ^ string_of_int (List.length xs))

(list (int_range 0 100)) in

Test.make ~name:"rev twice"

list_gen (fun xs -> List.rev (List.rev xs) = xs)

which gives rise to an output like:

law rev twice: 100 relevant cases (100 total)

len: 91: 2 cases

len: 34: 1 cases

len: 3: 7 cases

len: 817: 1 cases

len: 32: 1 cases

len: 76: 1 cases

len: 6: 3 cases

len: 61: 2 cases

len: 27: 1 cases

len: 17: 1 cases

len: 707: 2 cases



Classifying lists
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We can classify generated lists, e.g., on their length:

let list_gen =

set_collect

(fun xs -> "len: " ^ string_of_int (List.length xs))

(list (int_range 0 100)) in

Test.make ~name:"rev twice"

list_gen (fun xs -> List.rev (List.rev xs) = xs)

which gives rise to an output like:

law rev twice: 100 relevant cases (100 total)

len: 91: 2 cases

len: 34: 1 cases

len: 3: 7 cases

len: 817: 1 cases

len: 32: 1 cases

len: 76: 1 cases

len: 6: 3 cases

len: 61: 2 cases

len: 27: 1 cases

len: 17: 1 cases

len: 707: 2 cases

Take away:

a mixed distribution



Summary
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We can

� write general properties (in QCheck)

– as Boolean-valued functions

– with preconditions using ==>

� formulate generators

– based on builtin ones int, pos_int, float,

– for tuples with pair, triple,. . .

– for lists with list

� observe our tests with classifiers
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