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Abstract. We present a lattice-valued generalization of regular expres-
sions as an abstract domain for static analysis. The parametric abstract
domain rests on a generalization of Brzozowski derivatives and works for
both finite and infinite lattices. We develop both a co-inductive, simula-
tion algorithm for deciding ordering between two domain elements and
a widening operator for the domain. Finally we illustrate the domain
with a static analysis that analyses a communicating process against a
lattice-valued regular expression expressing the environment’s network
communication.

1 Introduction

As static analysis becomes more and more popular, so increases the need for
reusable abstract domains. Within numerical abstract domains the past four
decades have provided a range of such domains (signs, constant propagation,
congruences, intervals, octagons, polyhedra, . . . ) but for non-numerical domains
the spectrum is less broad (notable exceptions include abstract cofibered do-
mains [29] and tree schemata [23]). At the same time regular languages (regular
expressions and finite automata) have enabled computer scientists to create mod-
els of software systems and to reason about them both with pen-and-paper and
with model checking tools.

In this paper we recast and generalize regular expressions in an abstract in-
terpretation setting. In particular we formulate a parametric abstract domain of
lattice-valued regular expressions. We illustrate the domain by extending a tra-
ditional static analysis that infers properties of the variables of a communicating
process to also analyze network activity. For example, when instantiating the reg-
ular expression domain with a domain of channel names and interval values, we
can express values such as (ask![0; +∞]+report![0; +∞]·hsc?[−∞; +∞])∗ which
describes an iterative communication pattern in which each iteration either out-
puts a non-negative integer on the ask-channel, or outputs a non-negative in-
teger on the report-channel followed by reading any value on the hsc-channel.
As significant amounts of modern software depend critically on message-passing
network protocols and the software’s ability to behave according to certain com-
munication policies, our illustration analysis serves as a first step towards en-
abling static analyses to address this challenge. The resulting abstract domain
grew out of this development but certainly has other applications.
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L(∅) = ∅

L(ǫ) = {ǫ}

L(ℓ) = {c | c ∈ γ(ℓ)}

L(r∗) = ∪i≥0 L(r)i

L(r1 · r2) = L(r1) · L(r2)

L(∁ r) = ℘(C∗) \ L(r)

L(r1 + r2) = L(r1) ∪ L(r2)

L(r1 & r2) = L(r1) ∩ L(r2)

Fig. 1: Denotation of lattice-valued regular expressions: L : R̂A −→ ℘(C∗)

The contributions of this article are as follows:

– We develop a parametric regular expression domain over finite lattices in-
cluding a co-inductive ordering algorithm and a widening operator (Sec. 2),

– we generalize the constructions to infinite lattices (Sec. 3),
– we illustrate the domain with a static analysis for analyzing a communicating

process (Sec. 4), and
– we report on our prototype implementation (Sec. 5).

2 Regular expressions over complete lattices

We first consider how to view lattice-valued regular expressions as a parametric
abstract domain parameterized by an abstract domain A for its character liter-
als. Let 〈A;⊑〉 be a partially ordered set with a corresponding Galois insertion

〈℘(C),⊆〉 −−−→−→←−−−−
α

γ
〈A,⊑〉 (i.e., a Galois connection in which α : ℘(C) −→ A is

surjective [9]) connecting A to its concrete meaning (some set of characters C).
We let ℓ range over the elements of A. An element a of a lattice A is an atom if
⊥ ⊏ a and there does not exist an ℓ such that ⊥ ⊏ ℓ ⊏ a. We write Atoms(A)
for the set of A’s atom elements and let a, b, c range over these. We further-
more require α : Atoms(℘(C)) −→ Atoms(A), i.e., that α maps the atoms of
℘(C) (the singleton sets) to atoms of A. These assumptions have a number of
consequences:

– 〈A;⊑,⊥,⊤,⊔,⊓〉 is a complete lattice [9, Prop. 9],
– γ is strict (γ(⊥) = ∅),
– 〈A;⊑〉 is an atomic lattice [10] (any non-bottom element has an atom less

or equal to it),
– 〈A;⊑〉 is an atomistic [15] (or atomically generated) lattice: it is atomic and

any non-bottom element can be written as a join of atoms.
– α : Atoms(℘(C)) −→ Atoms(A) is surjective,
– Atoms have no overlapping meaning: a 6= a′ =⇒ γ(a) ∩ γ(a′) = ∅

Overall the Galois insertion assumption lets A inherit the complete lattice struc-
ture of ℘(C). The further assumption of atom preservation lets A further inherit
the atomic and atomistic structure of ℘(C). These assumptions still permit a
range of known base lattices, such as signs, parity, power sets, intervals, etc. For
the rest of this section we will further assume that A is finite and later in Sec. 3
lift that restriction.

The elements of A will play the role of the regular expression alphabet. Now
the language of lattice-valued regular expressions is defined as follows:

R̂A ::= ∅ | ǫ | ℓ | R̂∗
A | R̂A · R̂A | ∁ R̂A | R̂A + R̂A | R̂A & R̂A where ℓ ∈ A \ {⊥}
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D̂a(∅) = ∅

D̂a(ǫ) = ∅

D̂a(ℓ) =

{
ǫ a ⊑ ℓ

∅ a 6⊑ ℓ

D̂a(r
∗) = D̂a(r) · r

∗

D̂a(r1 · r2) =

{
D̂a(r1) · r2 + D̂a(r2) ǫ ⊏∼ r1

D̂a(r1) · r2 ǫ 6⊏∼ r1

D̂a(∁ r) = ∁ D̂a(r)

D̂a(r1 + r2) = D̂a(r1) + D̂a(r2)

D̂a(r1 & r2) = D̂a(r1)& D̂a(r2)

Fig. 2: Lattice-valued Brzozowski derivatives: D̂ : Atoms(A) −→ R̂A −→ R̂A

Notice how we include both complement ∁ and intersection & in the regular
expressions [6] (the result is also referred to as extended or generalized regular
expressions). Fig. 1 lists our generalized denotation for the lattice-valued regu-
lar expressions. One significant difference from the traditional definition, is how
we concretize lattice literals into one-element strings using the concretization
function γ (traditionally, L(c) = {c} for a character c). We immediately get the
traditional definition if we instantiate with A = ℘(C) and the identity Galois
insertion (and allow only atoms {c} as literals). Both traditional regular ex-
pressions and lattice-valued regular expressions operate over a finite alphabet.
However in contrast to traditional regular expressions where the finite alphabet
carries through in the denoted language, γ may concretize a single ‘lattice char-
acter’ to an infinite set, e.g., L(even) = {. . . ,−2, 0, 2, . . .} in a parity lattice.
From the denotation it is also apparent how excluding ⊥ ∈ A from lattice lit-
erals loses no generality, as bottom is expressible in the regular expressions as
∅ because γ is strict. Note that it is possible to express the same language in
syntactically different ways: for example, ∅, ∅ · even , and even & odd all denote
the same empty language. We therefore write ≈ to denote language equality in
the regular expression domain.

The lattice-valued regular expressions are ordered under language inclusion:
r ⊏∼ r′ ⇐⇒ L(r) ⊆ L(r′). Note how we use a different symbol ⊏∼ to help distin-
guish the ordering of the lattice-valued regular expressions from ⊑, the ordering
of the input domain A. The language inclusion ordering motivates our require-
ment for a Galois insertion: ∀a, a′ ∈ Atoms(A). a ⊏∼ a′ ⇐⇒ L(a) ⊆ L(a′) ⇐⇒
γ(a) ⊆ γ(a′) ⇐⇒ a = (α ◦ γ)(a) ⊑ a′, i.e., the two orderings are compat-
ible. The ordering is not anti-symmetric: ∅ ⊏∼ even & odd and even & odd ⊏∼ ∅
but ∅ 6= even & odd . To regain a partial order we consider elements up to lan-
guage equality. The resulting regular expression domain constitutes a lattice:
the least and greatest elements (bottom and top) are ∅ and ⊤∗, respectively
(with ⊤ being the top element from A). Furthermore, the least upper bound
and the greatest lower bound of two elements r1 and r2 are given symbolically
by r1+ r2 and r1 & r2, respectively. However the regular expression domain does
not constitute a complete lattice. For example, the least upper bound of the
chain ǫ ⊏ ǫ+even ·odd ⊏ ǫ+even ·odd +even ·even ·odd ·odd ⊏ . . . is an infinite
sum

∑
n even

noddn which is not a regular language over A, but context-free and
there is no least regular language containing it.
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nullable(∅) = false

nullable(ǫ) = true

nullable(ℓ) = false

nullable(r∗1) = true

nullable(r1 · r2) = nullable(r1) ∧ nullable(r2)

nullable(∁ r) = ¬nullable(r)

nullable(r1 + r2) = nullable(r1) ∨ nullable(r2)

nullable(r1 & r2) = nullable(r1) ∧ nullable(r2)

Fig. 3: The nullable operation: nullable : R̂A −→ Bool

As a fundamental operation over the lattice-valued regular expressions, we
consider the Brzozowski derivative [6]. A traditional Brzozowski derivative of
a regular expression r with respect to some character c returns a regular ex-
pression denoting the suffix strings w resulting from having read a character
c from r: L(Dc(r)) = c\L(r) = {w | c · w ∈ L(r)}. In Fig. 2 we define the
generalized lattice-based derivatives. Note how we derive lattice-valued regular
expressions only with respect to lattice atoms. Brzozowski’s derivatives gave rise
to a central equation, which also holds for the lattice-valued generalization: all
regular expressions can be expressed as a sum of derivatives (modulo an optional
epsilon):

Theorem 1 (Sum of derivatives [6]).

∀r ∈ R̂A. r ≈
∑

a∈Atoms(A)

a · D̂a(r) + δ(r) where δ(r) =

{
ǫ ǫ ⊏∼ r

∅ ǫ 6⊏∼ r

The proof utilizes that atoms are non-overlapping. We can use the equation to
characterize the lattice-valued Brzozowski derivatives. We first generalize the
notation to account for sets in the denotations: cs\L = {w | ∀c ∈ cs. c · w ∈ L}
and then utilize this notation in the characterization.

Lemma 2 (Meaning of derivatives).

∀r∈ R̂A, a∈Atoms(A). L(D̂a(r)) = γ(a)\L(r) = {w | ∀c ∈ γ(a). c · w ∈ L(r)}

Based on the inclusion ordering and Lemma 2 one can easily verify that D̂
is monotone in the second, regular expression parameter.

Lemma 3 (D̂ monotone). ∀a ∈ Atoms(A), r, r′ ∈ R̂A. r ⊏∼ r′ =⇒ D̂a(r) ⊏∼ D̂a(r
′)

We test the side-condition ǫ ⊏∼ r1 of Fig. 2 with a dedicated procedure,
nullable, defined in Fig. 3. We can prove that nullable has the intended meaning:

Lemma 4 (nullable correct). ∀r ∈ R̂A. ǫ ⊏∼ r ⇐⇒ nullable(r)

We can extend the definition of derivatives to sequences of derivatives. Se-
quences are defined inductively: s ::= ǫ | as and a derivation with respect to a

sequence is defined structurally [6]: D̂ǫ(r) = r and D̂as(r) = D̂s(D̂a(r)) meaning

that D̂a1...an
(r) = D̂an

(. . . D̂a1(r)).
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odd + even∗start

even∗

∅

ǫ

odd

odd

even

even
even

odd

even

odd

Fig. 4: Example automaton derived for odd + even∗

2.1 Derivatives as automata

One can view Brzozowski derivatives as a means for translating a regular expres-
sion to an automaton [6]. This view extends to the lattice-valued generalization:
(1) Each state is identified with a regular expression denoting the language it
accepts, (2) There is a transition consuming a from one state, r, to the state

D̂a(r), and (3) A state r is accepting if and only if nullable(r). Consider the

regular expression odd + even∗. Since D̂even(odd + even∗) ≈ even∗ the corre-
sponding automaton (depicted in Fig.4) can transition from the former to the
latter by consuming the atom even. The state corresponding to the root expres-
sion odd + even∗ furthermore acts as the initial state. As odd + even∗ is also
nullable the corresponding state is also a final state.

Brzozowski [6] proved that there are only a bounded number of different
derivatives of a given regular expression up to associativity, commutivity, and
idempotence (ACI) of +.1 Intuitively, ACI of + means that the terms of a sum
act as a set: parentheses and term order are irrelevant and any term present
is syntactically unique. For the lattice-valued generalization we can similarly
establish an upper bound by structural induction on r as a counting argument
on the number of syntactically unique term elements:

Lemma 5 (Number of dissimilar derivatives).

∀r ∈ R̂A. ∃n. |{D̂s(r) | s ∈ Atoms(A)∗}=ACI | ≤ n

As a consequence a resulting automaton is guaranteed to have only a finite
number of states. However a resulting automaton is not necessarily minimal.
By incorporating additional simplifying reductions (ǫ · r = r = r · ǫ, ∅ + r = r,
. . . ) we can identify more equivalent states in a resulting automaton, thereby
reducing its size further and thus making the approach practically feasible [25].
For example, there are five dissimilar derivatives (including the root expression)
of odd + even∗ up to ACI of +:

D̂even (odd + even
∗) = ∅+ ǫ · even∗

D̂odd (odd + even
∗) = ǫ + ∅ · even∗

D̂even (∅+ ǫ · even∗) = ∅+ ∅ · even∗ + ǫ · even∗

D̂even (ǫ+ ∅ · even∗) = ∅+ ∅ · even∗

1 It has later been pointed out [27, 26, 14] that Brzozowski’s proof had a minor flaw,
that could be fixed by patching the statement of the theorem [27] or by patching the
definition of derivatives to avoid the syntactic occurrence of δ [26]. We have followed
the latter approach in our generalization.
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proc leq test(r1, r2)
memo tbl := {}
proc leq memo(r1, r2)

if (r1, r2) ∈ACI memo tbl then return

memo tbl := memo tbl ∪ {(r1, r2)}
if nullable(r1) =⇒ nullable(r2)

then for all a ∈ Atoms(A), leq memo(D̂a(r1), D̂a(r2))
return

else raise False

try leq memo(r1, r2) with False => return false

return true

1

2

3

4

5

6

7

8

9

10

11

Fig. 5: Ordering algorithm

Any remaining derivatives, e.g., D̂odd (∅+ ǫ · even∗) = ∅+∅ ·even∗+∅ ·even∗

is ACI equivalent to one of these: ∅ + ∅ · even∗ + ∅ · even∗ =ACI ∅ + ∅ · even∗.
By additional simplifying reductions, the five derivatives can be reduced to four:
odd+even∗, even∗, ǫ, ∅ respectively. Collectively, these four derivatives represent
the four states of Fig. 4 (including the explicit error state ∅). We stress that the
results of this paper require only the ACI equivalences. For readability and to
make the techniques practical, for the rest of the article we will incorporate the
further simplifying reductions, which we denote ACI+.

2.2 An ordering algorithm

Both the least upper bound and the greatest lower bound of two regular expres-
sions r1 and r2 can be symbolically represented as r1 + r2 and r1 & r2, respec-
tively. However a procedure for deciding domain ordering is not as easy: The
language inclusion ordering ⊏∼ is ideal for pen-and-paper results, but it is not a
tractable approach for algorithmically comparing elements on a computer. We
will therefore develop an algorithm based on derivatives.

With the “derivatives-as-automata-states” in mind, we formulate in Fig. 5
a procedure for computing a (constructive) simulation. Essentially, the algo-
rithm corresponds to lazily exploring each state of the two regular expressions’
automata using Brzozowski’s construction, and computing a simulation (imple-
mented as a hashtable) between these state pairs. Upon successful termination
the algorithm will have computed in memo tbl a simulation between the deriva-
tives of r1 and r2. For example, if we invoke the algorithm with arguments
(ǫ, even∗) it will compute a simulation memo tbl = {(ǫ, even∗), (∅, ∅), (∅, even∗)}
and ultimately return true. Underway, the first call to leq memo with, e.g.,
arguments (∅, ∅) will memorize the pair and after ensuring that false =⇒

false it will recursively call leq memo with both (D̂odd(∅), D̂odd (∅)) = (∅, ∅) and

(D̂even(∅), D̂even(∅)) = (∅, ∅) as arguments. These two invocations will imme-
diately return successfully due to the memorization. By memorizing each pair
of regular expressions and testing memo tbl for membership up to ACI equiv-
alence the algorithm is guaranteed to terminate. As such, the algorithm is an
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inclusion (or containment) analogue of Grabmayer’s co-inductive axiomatization
of regular expression equivalence [14, 17]. There are different opportunities for
optimizing the ordering algorithm. By reflexivity, we can avoid derivatives when
leq memo is invoked with equal arguments r1 and r2. Another possibility is to
utilize hash consing to avoid computing the same derivatives repeatedly.

We can show that the language inclusion ordering and the derivative-based
ordering are in fact equivalent. The proof utilizes both Theorem 1, D̂’s mono-
tonicity (Lemma 3), and the correctness of nullable (Lemma 4). To prove equiv-
alence we consider a simulation ordering which we will use as a stepping stone.
We define a simulation � to be a relation that satisfies r � r′ iff nullable(r) =⇒

nullable(r′) and for all atoms a: D̂a(r) � D̂a(r
′). We can view such a simulation

� as a fixed point of a function F : ℘(R̂A × R̂A) −→ ℘(R̂A × R̂A) defined as
follows:

F (�′) = {(r1, r2) | nullable(r1) =⇒ nullable(r2)}

∩ {(r1, r2) | ∀ atoms a : (D̂a(r1), D̂a(r2)) ∈�′}

It is now straight-forward to verify that F is monotone. Since it is defined
over a complete lattice (sets of regular expression pairs), the greatest fixed point
is well-defined by Tarski’s fixed-point theorem. In particular, for a fixed point
F (�) =�, we then have � = {(r1, r2) | nullable(r1) =⇒ nullable(r2)} ∩

{(r1, r2) | ∀ atoms a : (D̂a(r1), D̂a(r2)) ∈�}. Write �̇ for gfpF . We are
now in position to prove equivalence of the language inclusion ordering and
the derivative-based ordering. In the following lemma we do so in two steps:

Lemma 6 (Ordering equivalence).

(a) ∀r, r′ ∈ R̂A. leq test(r, r′) returns true ⇐⇒ r �̇ r′

(b) ∀r, r′ ∈ R̂A. r ⊏∼ r′ ⇐⇒ r �̇ r′

Algorithms for testing inclusion (or containment) of two regular expres-
sions r1 and r2 are well known [22]. The textbook algorithm tests r1 & ∁ r2 for
emptiness [22]. In our generalized setting, this would correspond to invoking
leq test(r1 & ∁ r2, ∅), for which all sub-derivatives of the second parameter ∅
passed around by leq memo continue to be ∅ (which is clearly not nullable). The
loop would thereby explore all paths from the first parameter’s root expression
r1 & ∁ r2 to a nullable derivative, corresponding to a search for a reachable ac-
ceptance state in a corresponding DFA under the derivatives-as-automata-view.
As such, the textbook emptiness-testing algorithm can be viewed as a special
case of our derivative-based algorithm.

2.3 Widening

A static analysis based on Kleene iteration over the regular expression domain
is not guaranteed to terminate, as it contains infinite, strictly increasing chains:
ǫ ⊏ ǫ+ l ⊏ ǫ+ l+(l · l) ⊏ ǫ+ l+(l · l)+ (l · l · l) ⊏ . . . . For this reason we need a
widening operator. From a high-level point of view the widening operator works
by (a) formulating an equation system, (b) collapsing some of the equations in
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order to avoid infinite, strictly increasing chains, and (c) solving the collapsed
equation system to get back a regular expression. Step (b) is inspired by a
widening operator of Feret [11] and Le Gall, Jeannet, and Jéron [13], and step
(c) uses a translation scheme due to Brzozowski [6].

Let us consider an example of widening odd and even∗. As a first step we form
their sum: odd+even∗. We know from Sec. 2.1 that it has four different simplified
derivatives: {odd + even∗, even∗, ǫ, ∅}. By Theorem 1 we can characterize them
as equations, where we name the four derivatives R0, R1, R2, R3 (R0 denotes the
root expression):

R0 ≈ even ·R1 + odd · R2 + ǫ

R1 ≈ even ·R1 + odd · R3 + ǫ

R2 ≈ even ·R3 + odd · R3 + ǫ

R3 ≈ even ·R3 + odd · R3

We subsequently collect the coefficients of R0, R1, R2, R3 and state the resulting
equation system as a matrix. For example, by collecting the coefficients to R3 in
the equation R2 ≈ even ·R3 + odd ·R3 + ǫ we obtain R2 ≈ (even + odd) ·R3 + ǫ.
The resulting matrix describes the transitions of a corresponding finite automata
as displayed in Fig. 4:




R0

R1

R2

R3


 ≈




∅ even odd ∅
∅ even ∅ odd

∅ ∅ ∅ even + odd

∅ ∅ ∅ even + odd


 ·




R0

R1

R2

R3


+




ǫ

ǫ

ǫ

∅




The widening operator partitions the set of derivatives into a fixed, finite
number of equivalence classes and works for any such partitioning. In the present
case we will use a coloring function, col : R̂A −→ R̂A −→ [1; 3] to partition a set
of derivatives with respect to a given root expression r′:

colr′(r) =





1 if r =ACI r′

2 if r 6=ACI r′ and nullable(r)

3 if r 6=ACI r′ and ¬nullable(r)

colodd+even∗ will thus induce a partitioning: {

color 1︷ ︸︸ ︷
{odd + even

∗},

color 2︷ ︸︸ ︷
{even∗

, ǫ},

color 3︷︸︸︷
{∅} }.

This partitioning can be expressed by equating R1 and R2. By adding the right-
hand-sides of R1 and R2 into a combined right-hand-side for their combination
R12, we can be sure that the least solution to R12 in the resulting equation
system is also a solution to the variables R1 and R2 in the original equation
system. For example, the equation R0 ≈ even ·R1 + odd ·R2 + ǫ becomes R0 ≈
(even + odd) · R12 + ǫ in the collapsed system. The resulting equation system
now reads:



R0

R12

R3


 ≈



∅ even + odd ∅
∅ even even + odd

∅ ∅ even + odd


 ·



R0

R12

R3


+



ǫ

ǫ

∅




This particular step of the algorithm represents a potential information loss,
as the coefficients of each of R1 and R2 are merged into joint coefficients for
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Algorithm Widening(r, r′)

1. Form r0 = r + r′

2. Derive the characteristic equations over variables Ri:
Ri ≈

∑
aj∈Atoms(A) aj · Rj + δ(ri)

3. For each equation collect the coefficients for each variable Ri

4. Compute equivalence classes for Ri

5. Collapse equations based on equivalence classes and solve the collapsed
equations

6. Return the solution to (the equivalence class containing) R0

Fig. 6: The widening algorithm

R12. We can now solve these by combining (a) elimination of variables and (b)
Arden’s lemma [3] (which states that an equation of the form X ≈ A · X + B
has solution X ≈ A∗ ·B). The equation R3 ≈ (even + odd) ·R3 + ∅ therefore has
solution R3 ≈ (even + odd)∗ · ∅ =ACI+ ∅, and we can thus eliminate the variable
R3 by substituting this solution in (and simplifying):

[
R0

R12

]
≈

[
∅ even + odd

∅ even

]
·

[
R0

R12

]
+

[
ǫ

ǫ

]

Now R12 ≈ even ·R12 + ǫ has solution R12 ≈ even∗ · ǫ =ACI+ even∗ by Arden’s
lemma. Again we eliminate the variable:

[
R0

]
≈

[
∅
]
·
[
R0

]
+

[
(even + odd) · even∗ + ǫ

]

From this we read off the result: R0 ≈ (even + odd) · even∗ + ǫ. which clearly
includes both arguments odd and even∗ to the widening operator as well as some
additional elements, such as odd · even .

We summarize the widening algorithm in Fig. 6 where we write Ri for the
variable corresponding to the derivative regular expression ri. We can further-
more prove that the procedure indeed is a widening operator.

Theorem 7. The widening algorithm constitutes a widening operator:

(a) the result is greater or equal to any of the arguments and
(b) given an increasing chain r0 ⊏∼ r1 ⊏∼ r2 ⊏∼ . . . the resulting widening sequence

defined as r0 = r0 and rk+1 = rk ▽ rk+1 stabilizes after a finite number of
steps.

The widening algorithm in Fig. 6 works for any partitioning into a fixed
number of equivalence classes. The above example illustrates the setting (level 0)
in which a coloring function is used directly to partition the derivatives into three
equivalence classes. Inspired by Feret [11] and Le Gall, Jeannet, and Jéron [13],
we generalize this pattern to distinguish two regular expressions at level k+1 if
their derivatives can be distinguished at level k:

r1 ≈colr
0 r2 iff colr(r1) = colr(r2)

r1 ≈colr
k+1 r2 iff r1 ≈colr

k r2 ∧ ∀ atoms a. D̂a(r1) ≈
colr
k D̂a(r2)
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r̂ange(∅) = ̂to equivs (⊤)

r̂ange(ǫ) = ̂to equivs (⊤)

r̂ange(ℓ) = ̂to equivs (ℓ)

r̂ange(r∗) = r̂ange(r)

r̂ange(r1 · r2) =

{
̂overlay (r̂ange(r1), r̂ange(r2)) ǫ ⊑ r1

r̂ange(r1) ǫ 6⊑ r1

r̂ange(∁ r) = r̂ange(r)

r̂ange(r1 + r2) = ̂overlay (r̂ange(r1), r̂ange(r2))

r̂ange(r1 & r2) = ̂overlay (r̂ange(r1), r̂ange(r2))

Fig. 7: Generic r̂ange function for partitioning A’s atoms: r̂ange : R̂A −→ êquivA

The resulting partitioning ≈colr
k essentially expresses bisimilarity up to some

bound k. With this characterization in mind, we define an extensive, idempotent
operator ρcolrk that quotients the language of the underlying languages with

respect to ≈colr
k : r▽ r′ = ρ

colr+r′

k (r+r′). Collectively, ρ
colr+r′

k represents a family
of widening operators (one for each choice of k).

In our example of widening odd and even∗ the coloring function assigns the
error state R3 (representing ∅) to a different equivalence class than any non-
error states, thereby preventing them from being collapsed. Such collapsing will
result in a severe precision loss, as the self-loops of error states such as R3 are
inherited by a resulting collapsed state, thereby leading to spurious self-loops in
the result. After having identified the issue on a number of examples, we designed
a refined coloring function colalt : R̂A −→ R̂A −→ [1; 4] that gives a separate
color 4 to “error states”: regular expressions from which a nullable expression
is unreachable under any sequence of derivatives. In the matrix representation
such expressions can be identified by their complement: we can find all non-
error states by a depth-first marking of all Ri (representing ri) reachable from
a nullable state under a reverse ordering of the derivative transitions.2

3 From finite to infinite lattices

The Brzozowski identity and the algorithms utilizing it are only tractable up to
a certain point: For example, even for a finite interval lattice over 32-bit inte-
gers, there are 232 atoms of the shape [i; i] making a sum (and loops iterating)
over all such atoms unrealistic to work with. In fact, many derivatives are syn-
tactically identical, which allow us to consider only a subset of “representative”
atoms. For example, consider a derivative over interval-valued regular expres-
sions: D̂[1;1]([1; 10] + [20; 22]) = ǫ + ∅. Clearly the result is identical for atoms
[2; 2], . . . , [10; 10].3 To this end we seek to partition a potentially infinite set of

2 Solving the equations for such error states before step 5 (collapsing) has the same
effect: their collective solution is ∅ in the matrix, and substituting the solution in
removes any transitions to and from them, and thereby any observable effect of
grouping an error state and a non-error state in the same equivalence class.

3 The result is also ǫ + ∅ for [20; 20], [21; 21], [22; 22] up to ACI of +, but that just
constitutes a refinement identifying even more equivalent atoms.
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atoms into a finite set of equivalence classes [a1], . . . , [an] with identical deriva-

tives. We represent a partition as an abstract type êquivA suitably instantiated
for each lattice A. One operation ̂to equivs : A −→ êquivA computes a partition
for a given lattice literal and a second operation ̂overlay : êquivA −→ êquivA −→

êquivA combines two partitions into a refined one. The computed partition should
satisfy the following two properties:

∀ℓ∈A, [ai]∈ ̂to equivs (ℓ), a, a′∈Atoms(A).

a, a
′∈ [ai] =⇒ (a⊑ℓ∧ a

′⊑ℓ) ∨ (a 6⊑ℓ∧ a
′ 6⊑ℓ) (1)

∀[b], [c]∈ êquivA, [ai]∈ ̂overlay ([b], [c]), a, a′∈Atoms(A).

a, a
′∈ [ai] =⇒ ∃j, k. a, a′∈ [bj ] ∧ a, a

′∈ [ck] (2)

where [b], [c] range over partitions of A’s atoms. Based on ̂to equivs and ôverlay
we can formulate in Fig. 7 a generic r̂ange function, that computes an atom parti-

tion for a given regular expression. Assuming that ̂to equivs produces a partition

and that ôverlay preserves partitions the result of r̂ange will also be a partition.
Specifically, r̂ange computes a partition over A’s atoms for the equivalence rela-
tion D̂a(r) = D̂a′(r). We can verify this property by structural induction over
r:

Lemma 8. ∀r ∈ R̂A, [ai] ∈ r̂ange(r), a, a′ ∈ Atoms(A). a, a′∈ [ai] =⇒ D̂a(r) = D̂a′(r)

As a consequence we can optimize the ordering algorithm in Fig. 5. For all

atoms a, a′ such that [a1], . . . , [an] = ôverlay (r̂ange(r1), r̂ange(r2)) and a, a′ ∈

[ai] for some 1 ≤ i ≤ n, by Lemma 8 and Property 2 we have both D̂a(r1) =

D̂a′(r1) and D̂a(r2) = D̂a′(r2) and can therefore just check one representative
from each equivalence class. We thus replace line number 7 in Fig. 5 with:

then for all [ai] ∈ ̂overlay (r̂ange(r1), r̂ange(r2)), leq memo(D̂r̂epr([ai])(r1), D̂r̂epr([ai])(r2))

where the function r̂epr returns a representative atom ai from the equivalence
class [ai].

Corollary 9 (Correctness of modified ordering algorithm).

∀r, r′ ∈ R̂A. leq test′(r, r′) returns true ⇐⇒ r ⊏∼ r′

Similarly we can adjust step 2 of the widening algorithm in Fig. 6 to form
finite characteristic equations. We do so by limiting the constructed sums to one
term per equivalence class in r̂ange’s partition of Atoms(A): Ri ≈

∑
[aj ]∈r̂ange(ri)

p̂roject([aj ]) ·Rj +δ(ri) where p̂roject([aj ]) returns a lattice value from A account-

ing for all atoms in the equivalence class [aj ]: ∀a ∈ [aj ]. a ⊑ p̂roject([aj ]).
4 For

infinite lattices A not satisfying ACC, we cannot ensure stabilization over, e.g.,
∅ ⊏ [0; 0] ⊏ [0; 1] ⊏ . . . (injected as character literals into R̂Interval), as the
widening algorithm does not incorporate widening over A. However, when lim-
ited to chains with only a finite number of different lattice literals the operator
constitutes a widening:

4 Generally the solution to this equation is an over-approximation but so is the result
of widening.
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̂to equivs ([l; u]) =





[−∞; +∞] l=−∞∧ u=+∞

[−∞;u], [u+ 1;+∞] l=−∞∧ u 6=+∞

[−∞; l − 1], [l; +∞] l 6=−∞∧ u=+∞

[−∞; l − 1], [l;u], [u+ 1;+∞] l 6=−∞∧ u 6=+∞

̂overlay ([l1; +∞], [l2; +∞]) = [l1; +∞] l1 = l2 holds as an invariant

̂overlay ([l1;u1] ::R
′
1, [l2;u2] ::R

′
2) =





[l1;u1] :: ̂overlay (R′
1, R

′
2) l1= l2 ∧ u1=u2

[l1;u1] :: ̂overlay (R′
1, [u1 + 1; u2] ::R

′
2) l1= l2 ∧ u1<u2

[l2;u2] :: ̂overlay ([u2 + 1; u1] ::R
′
1, R

′
2) l1= l2 ∧ u1>u2

Fig. 8: ̂to equivs and ̂overlay for the interval lattice

Corollary 10. The modified widening algorithm constitutes a widening operator
over increasing chains containing only finitely many lattice literals from A.

The widening operator over the lattice-valued regular expressions does not
incorporate a widening operator over A. As such there may be infinite, strictly
increasing chains of values from A that flow into R̂A (when such values are in-
jected as character literals). Furthermore there may be a complex flow of values

from A and into R̂A and back again from R̂A and into A via p̂roject . Following
abstract interpretation tradition [4], any such cyclic flows of values (be it over

A or R̂A) should cross at least one widening operator, e.g., on loop headers, to
guarantee termination. An analysis component over A (e.g., for interval analysis

of variables) that supplies R̂A with injected values from A will therefore itself
have to incorporate widening over A at these points. In this situation, thanks
to A’s widening operator only a finite number of different values from A can
flow to (the chains of) the regular expressions. We thereby satisfy Corollary 10’s
condition and ensure overall termination by “delegating the termination respon-
sibility” to each of the participating abstract domains. Next, we turn to specific
instances for A.

3.1 Small, finite instantiations

Simple finite lattices such as the parity lattice can meet the above interface
by letting each atom a represent a singleton equivalence class [a]. We can then

represent êquivA as a constant list of such atoms. For example, for the parity

lattice we can implement ̂to equivs and ôverlay as constant functions, returning

[even ], [odd ]. It follows that ̂to equivs produces a partition, that ôverlay preserves
it, and that the definitions satisfies Properties 1,2.

3.2 The interval lattice

For an interval lattice [7] we can represent each equivalence class as an interval

and the entire partition as a finite set of non-overlapping intervals: êquiv Interval =
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℘(Interval). We can formulate ̂to equivs in Fig. 8 as a case dispatch that takes
into account the limit cases −∞ and +∞ of an interval literal [l;u]. As an

example, ̂to equivs ([0; 2]) returns the partition [−∞;−1], [0; 2], [3; +∞] of the

atoms [i; i]. By sorting the equivalence classes (intervals) we can ôverlay two

partitions in linear time. In Fig. 8 we formulate ôverlay as a recursive function
over two such sorted partitions. The implementation satisfies the invariant that
at a recursive invocation (a) neither of its arguments are empty, (b) the two
leftmost lower bounds are identical, and (c) the two rightmost upper bounds

are +∞. As such each recursive invocation of ôverlay combines two partitions

from (their common) leftmost lower bound to +∞. As an example, ôverlay
of [−∞;−1], [0; 2], [3; +∞] and [−∞;−3], [−2; 1], [2; +∞] returns the partition
[−∞;−3], [−2;−1], [0; 1], [2; 2], [3; +∞]. We prove that the definitions have the

desired properties. For ôverlay they follow by well-ordered induction under the
termination measure “number of overlapping interval pairs”.

Lemma 11. (a) ̂to equivs computes a partition and (b) ôverlay preserves par-
titions

Lemma 12. ̂to equivs and ôverlay satisfy Properties 1, 2

3.3 Product lattices

We can combine partitions to form partitions over product lattices of either of
the two traditional forms: Cartesian products and reduced/smash products.

The Cartesian product lattice Given two potentially infinite lattices A,B
and their product lattice A ×B ordered componentwise, we can partition their
atoms in a compositional manner. Assuming the product lattice A×B satisfies
the requirements of Sec. 2, this implicitly means we work over a domain where
for all ℓA ∈ A \ {⊥}. γ(〈ℓA,⊥〉) 6= ∅ and for all ℓB ∈ B \ {⊥}. γ(〈⊥, ℓB〉) 6= ∅
since either would mean that, e.g., γ(〈ℓA,⊥〉) = ∅ = γ(⊥) and thereby break
the Galois insertion requirement. With this implicit assumption in place, the
atoms of the product lattice must be of the shape 〈a,⊥〉 ∈ Atoms(A) × B and

〈⊥, b〉 ∈ A × Atoms(B). Given representations êquivA and êquivB partition-
ing A’s and B’s atoms, we can partition the atoms of A × B with a partition

êquivA× êquivB where the first component partitions atoms in Atoms(A)×{⊥}
and the second component partitions atoms in {⊥} × Atoms(B). Based on op-

erations ̂to equivsA and ̂to equivsB we can therefore write ̂to equivs (ℓA, ℓB) =

( ̂to equivsA(ℓA), ̂to equivsB(ℓB)). For example, for a Cartesian product of inter-

vals ̂to equivs ([−1; 2], [0; 1]) returns the partition (([−∞;−2], [−1; 2], [3; +∞]),
([−∞;−1], [0; 1], [2; +∞])). Let [a] and [b] range over partitions of A’s and B’s

atoms. We can also write ôverlay compositionally: ôverlay (([a], [b]), ([a′], [b′])) =

(ôverlayA([a], [a
′]), ôverlayB([b], [b

′])).
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The reduced/smash product lattice If for two lattices A and B, for all ℓA ∈
A \ {⊥}. γ(〈ℓA,⊥〉) = ∅ and for all ℓB ∈ B \ {⊥}. γ(〈⊥, ℓB〉) = ∅ we can instead
consider the reduced/smash product: A ∗B = {〈⊥,⊥〉} ∪ (A \ {⊥})× (B \ {⊥})
where atoms are of the shape 〈a, b〉 ∈ Atoms(A) × Atoms(B). Again we can

partition the atoms of A∗B with a product êquivA×êquivB this time interpreting

an equivalence class ([a], [b]) ∈ êquivA× êquivB as all atoms (a′, b′) where a′ ∈ [a]

and b′ ∈ [b]. Despite the different interpretation, we define ̂to equivs and ôverlay
as in Cartesian products.

Coarser partitions are possible. For the reduced/smash product we have ex-

perimented with a functional partition [Atoms(A)] −→ êquivB maintaining in-
dividual partitions of B for each equivalence class of Atoms(A). For example, for
a interval pair literal 〈[1; 1], [0; 2]〉 the coarser functional partition will have only
5 equivalence classes (both the [−∞; 0] and [2;+∞] entries map to the parti-
tion [−∞; +∞] and the atom partition for [0; 2] at entry [1; 1] has three entries)
whereas the finer partition will have 3×3 = 9 equivalence classes. A coarser par-
tition leads to fewer iterations in the algorithms and ultimately shorter, more
readable regular expressions output to the end user.

For both products we summarize our partition results in the following lemmas.

Lemma 13. If ̂to equivsA and ̂to equivsB computes partitions and ôverlayA

and ôverlayB preserves partitions then (a) ̂to equivsA×B computes a partition,

(b) ôverlayA×B preserves partitions, (c) ̂to equivsA∗B computes a partition, and

(d) ôverlayA∗B preserves partitions
Lemma 14. If ̂to equivsA and ôverlayA and ̂to equivsB and ôverlayB satisfy

Properties 1, 2 then (a) ̂to equivsA×B and ôverlayA×B also satisfy Properties 1,

2 and (b) ̂to equivsA∗B and ôverlayA∗B satisfy Properties 1, 2

For presentational purposes we have stated the results in terms of a Cartesian
pair and a reduced/smashed pair, but the results hold for a general Cartesian
product ΠiAi and for a general reduced/smashed product Πi(Ai \ {⊥}) ∪ {⊥}.

4 An example language and analysis

With the regular expression domain in place we are now in position to illustrate
it with a static analysis. To this end we first study a concurrent, imperative pro-
gramming language. Our starting point is a core imperative language structured
into three syntactic categories of arithmetic expressions (e), Boolean expressions
(b), and statements (s):

E ∋ e ::= n | x | ? | e1 + e2 | e1 − e2

B ∋ b ::= tt | ff | x1 < x2

S ∋ s ::= skip | x :=e | s ;s | if b then s else s | while b do s end

| s ⊕ s | ch?x | ch!e | stop

P ∋ p ::= pid1 : s1 ‖ . . . ‖ pidn : sn
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spawn server() {

highscore = 0;

while (true) {

choose {

{ ask? cid

hsc! highscore; }

| { report? new

if (highscore < new)

{ highscore = new; } } } } }

spawn client() {

id = 0;

best = 0;

while (true) {

ask! id;

hsc? best;

new = ?;

if (best < new)

{ best = new;

report! best; } } }

Fig. 9: A server and client sharing a high score

For presentational purposes we keep the arithmetic and Boolean expressions min-
imal. The slightly non-standard arithmetic expression ’?’ non-deterministically
evaluates to any integer. The statements of the core language have been extended
with primitives for non-deterministic choice (⊕), for reading and writing mes-
sages from/to a named channel (ch?x and ch!e), and for terminating a process
(stop). The two message passing primitives are synchronous. To build systems
of communicating processes, we extend the language further with a syntactic
category of programs (p), consisting of a sequence of named processes.

As an example, consider a server communicating with a client as illustrated in
Fig. 9. The server and the client each keep track of a ‘highscore’. The client may
query the server on the ask-channel and subsequently receive the server’s current
highscore on the hsc-channel. The client may also submit a new highscore to
the server, using the report-channel. The example client performs an indefinite
cycle consisting of a query followed by a subsequent response and a potential
new highscore report. We can express this example as a program of our core
process language.

We formulate in Fig. 10 a static analysis P̂ which analyzes a process in
isolation against an invariant for the context’s communication. The analysis

is formulated for a general abstract domain of values V̂al , e.g., intervals. To
capture communication over a particular channel, we reuse an interval lattice
(assuming the channels have been enumerated). This leads to a reduced product

Interval ∗V̂al for characterizing reads and an identical product for characterizing
writes. We can then formulate a channel lattice for capturing both reads and

writes: Ĉh(V̂al) = (Interval ∗ V̂al)× (Interval ∗ V̂al). This product should not be
reduced, as we do not wish to exclude processes that, e.g., only perform writes
(with the read half of the channel domain being bottom). Finally we can plug

the channel lattice into the regular expression domain: R̂
Ĉh(V̂al)

. In the static

analysis in Fig. 10, f (for future) ranges over this domain. Intuitively, ρ̂ over-
approximates the store (as traditional), whereas f over-approximates the signals
of the environment (it is consumed by the analysis). The sequential analysis

furthermore relies on an auxiliary function Â for analyzing arithmetic expressions

and two filter functions t̂rue and f̂alse to pick up additional information from
variable comparisons (their definitions are available in Appendix J). Finally, the
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P̂ [[skipℓ]] = λ(ρ̂, f).(ρ̂, f)

P̂[[x :=ℓ
e]] = λ(ρ̂, f).(âssign(ρ̂, x , Â(e, ρ̂)), f)

P̂ [[s1 ;
ℓ
s2]] = P̂[[s2]] ◦ P̂ [[s1]]

P̂ [[ifℓ b then s1 else s2]] = λ(ρ̂, f).P̂ [[s1]](t̂rue(b, ρ̂), f) ⊔ P̂ [[s2]](f̂alse(b, ρ̂), f)

P̂ [[whileℓ b do s end]] = λ(ρ̂, f).(f̂alse(b, ρ̂′′), f ′′)

where (ρ̂′′, f ′′) = lim
i

F
i(ρ̂, f) and F (ρ̂′, f ′) = (ρ̂′, f ′)▽ P̂ [[s]](t̂rue(b, ρ̂′), f ′)

P̂[[s1 ⊕ℓ
s2]] = λ(ρ̂, f).P̂ [[s1]](ρ̂, f) ⊔ P̂ [[s2]](ρ̂, f)

P̂ [[ch?ℓx ]] = λ(ρ̂, f).
⊔

[ch!va]∈r̂ange(f)

ch!v=p̂roject([ch!va])

D̂r̂epr([ch!va])(f) 6⊏∼ ∅

(âssign(ρ̂, x , v), D̂r̂epr([ch!va])(f))

P̂[[ch!ℓe]] = λ(ρ̂, f).
⊔

[ch?va]∈ ̂overlay (r̂ange(f), ̂to equivs (ch?v′))

ch?v=p̂roject([ch?va])

v⊓v′ 6=⊥

D̂r̂epr([ch?va])(f) 6⊏∼ ∅

(ρ̂, D̂r̂epr([ch?va])(f)) where v
′ = Â(e, ρ̂)

P̂ [[stopℓ]] = λ(ρ̂, f).(⊥, f)

Fig. 10: Analysis of the process language: P̂ : S −→ Ŝtore × R̂
Ĉh(V̂al)

−→ Ŝtore ×

R̂
Ĉh(V̂al)

auxiliary function âssign defined as âssign(ρ̂, x , v) = ρ̂[x 7→ v] models the effect
of an assignment.

In the two cases for network read and write we utilize the shorthand notation
[ch!va] and [ch?va] to denote equivalence classes [〈(⊥,⊥), ([ch; ch], [va; va])〉] and

[〈([ch; ch], [va; va]), (⊥,⊥)〉] over atom writes and atom reads in Ĉh(V̂al), respec-

tively. Both of these cases utilize the Brzozowski derivative D̂ of f to anticipate
all possible writes and reads from the network environment. For example, if we
analyze a read statement in?x in an abstract store ρ̂ and in a network environ-
ment described by in![1; 1000]·r (for some r 6⊏∼ ∅) we first assume channel names
have been numbered, e.g., mapping channel name ‘in’ to 0. For readability, we
therefore write in![1; 1000] · r instead of 〈(⊥,⊥), ([0; 0], [1; 1000])〉 · r where the
channel name in should be understood as 0 (which we can capture precisely with
the intervals as [0; 0]) and where we similarly utilize the above shorthand nota-

tion. Now r̂ange(in![1; 1000] · r) = r̂ange(in![1; 1000]) = ̂to equivs (in![1; 1000])
returns a partition that includes the equivalence class [in![1; 1000]]. Further-

more p̂roject([in![1; 1000]]) = in![1; 1000] and r̂epr([in![1; 1000]]) returns an

atom in this equivalence class, e.g., in![1; 1] such that D̂in![1;1]([in![1; 1000]] · r) =

ǫ · r =ACI+ r 6⊏∼ ∅. The analysis therefore includes (âssign(ρ̂, x, [1; 1000]), r) =
(ρ̂[x 7→ [1; 1000]], r) as an approximate post-condition for the read statement.
When the analysis attempts to derive wrt. atoms from other equivalence classes,
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e.g., the atom in![1001; 1001] we get D̂in![1001;1001]([0![1; 1000]] · r) = ∅ ·r =ACI+

∅ and such contributions are therefore disregarded. As usual, the analysis can
incur some information loss, e.g., if each branch of a conditional statement con-
tains a read into the same variable. These values will then be over-approximated
by the join of the underlying value domain.

For the interval domain of values, we stick to the traditional widening oper-
ator [7]. For the abstract stores, we perform a traditional pointwise lift ▽̇ of the
interval widening for each store entry. For regular expressions, the situation is
more interesting: In the search for a while-loop invariant, new futures can only
appear as derivatives of the loop’s initial future. Since there are only a finite
number of these up to ACI of +, an upward Kleene iteration is bounded and
hence does not require widening. The resulting widening operator over analysis
pairs can therefore be expressed as follows: (ρ̂1, f1)▽ (ρ̂2, f2) = (ρ̂1 ▽̇ ρ̂2, f1+f2).

For example, under the worst-case assumption of any context communication
(⊤∗), the analysis will determine the following server invariant for the highscore
example, expressed as an abstract store and a regular expression over channel-
labeled intervals: [ cid 7→ [−∞; +∞]; highscore 7→ [0; +∞]; new 7→ [−∞; +∞] ] and
⊤∗. When analyzed under the erroneous policy of receiving (non-negative pay-
load) messages in the wrong order (ask![0; +∞]+ report![0; +∞] ·hsc?[−∞; +∞])∗

the analysis infers the following stronger invariant for the server: [ highscore 7→

[0; +∞]; new 7→ [0; +∞] ] and (ask![0; +∞]+report![0; +∞]·hsc?[−∞; +∞])∗ and that
hsc! highscore in line number 6 cannot execute successfully.

5 Implementation

We have implemented a prototype of the analysis in OCaml. Currently the pro-
totype spans approximately 5000 lines of code. Each lattice (intervals, abstract
stores, . . . ) is implemented as a separate module, with suitable parameteriza-
tion using functors, e.g., for the generic regular expression domain. The parti-
tion of lattice atoms is implemented by requiring that a parameter lattice A

implements ̂to equivs and ôverlay with signatures as listed in Sec. 3. To gain
confidence in the implementation, we have furthermore performed randomized,
property-based testing (also known as ‘quickchecking’) of the prototype. The
QuickCheck code takes an additional ∼ 650 lines of code. We quickchecked the
individual lattices for typical lattice properties (partial order properties, asso-

ciativity and commutivity of join and meet, etc.) and the lattice operations (D̂,
·, etc.) for monotonicity, using the approach of Midtgaard and Møller [24]. This
approach was fruitful in designing and testing the suggested ordering algorithm

(and its implementation) and in our implementations of ̂to equivs and ôverlay .
To increase our confidence in the suggested widening operator, we furthermore
extended the domain-specific language of Midtgaard and Møller [24] with the
ability to test whether lattice-functions are increasing, when applied to arbi-
trarily generated input. We then used this ability to test all involved widening
operators. QuickCheck immediately found a bug in an earlier version of our
widening algorithm, which was not increasing in the second argument on the
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input (ǫ, (⊤∗ ·odd ·odd)& ∁ ǫ) (here again listed over the parity domain). The
corresponding automaton computed for this counterexample turns out to have a
strongly connected component, which led us to find and patch an early erroneous
attempt to identify and remove explicit error states.

With the domain and analysis implemented and tested, we can apply it to the
example program from Sec. 4 and we obtain the reported results. We have also
analyzed a number of additional example programs, including several from the
literature: two CSP examples from Cousot and Cousot [8], a simple math server
adapted from Vasconcelos, Gay, and Ravara [28], and a simple authentication
protocol from Zafiropulo et al. [31]. For each of these examples, the analysis
prototype completes in less than 0.003 seconds on a lightly loaded laptop with
a 2.8 Ghz Intel Core i5 processor and 8 GB RAM. While this evaluation is
encouraging it is also preliminary. We leave a proper empirical evaluation of the
approach for future work. The source code of the prototype, the corresponding
QuickCheck code, and our examples are available as downloadable artifacts.5

Our proofs are attached as appendices.

6 Related work

Initially Cousot and Cousot developed a static analysis for Hoare’s Communi-
cating Sequential Processes (CSP) [8]. Our example analysis also works for a
CSP-like language, but differs in the means to capture communication, where
we have opted for lattice-valued regular expressions. A line of work has since
developed static analyses for predicting the communication topology of mobile
calculi. For example, Venet [30] developed a static analysis framework for π-
calculus and Rydhof Hansen et al. [16] develop a control-flow analysis and an
occurrence counting analysis for mobile ambients. Whereas the communication
topology is apparent from the program text of our process programs, we instead
focus on analyzing the order and the content of such communication by means
of lattice-valued regular expressions.

Historically, the Communicating Finite State Machines (CFSMs) [5] have
been used to model and analyze properties of protocols. CFSMs express a dis-
tributed computation as a set of finite state automata that communicate via
(buffered) message passing over channels. We refer to Le Gall, Jeannet, and
Jéron [13] for an overview of (semi-)algorithms and decidability results within
CFSMs. Le Gall, Jeannet, and Jéron [13] themselves developed a static analy-
sis for analyzing the communication patterns of FIFO-queue models in CFSMs.
In a follow-up paper, Le Gall and Jeannet [12] developed the abstract domain
of lattice automata (parameterized by an atomic value lattice), thereby lifting a
previous restriction to finite lattices. Our work differs from Le Gall and Jeannet’s
in that it starts from the language-centric, lattice-valued regular expressions, as
opposed to the decision-centric, lattice-valued finite automata (one can however
translate one formalism to the other). The two developments share a common de-

5 https://github.com/jmid/regexpanalyser
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pendency on atomistic lattices:6 Lattice automata require atoms (and partitions
over these) as its labels, whereas our co-inductive ordering algorithm relies on
Brzozowski derivatives wrt. atoms (and partitions over these). We see advantages
in building on Brzozowski derivatives: (a) we can succinctly express both inter-
section (meet) and complement symbolically in the domain, (b) we immediately
inherit a “one-step normal form” from the underlying equation (Theorem 1),
whereas Le Gall and Jeannet develop a class of ‘normalized lattice automata’,
and (c) our ordering algorithm lazily explores the potentially exponential space
of derivatives (states) and bails early upon discovering a mismatch.

Our work has parallels to previous work by Lesens, Halbwachs, and Raymond
(LHR) on inferring network invariants for a linear network of synchronously com-
municating processes [20]. Similar to us, they use a regular language to capture
network communication. They furthermore allow network observers to monitor
network communication and emit disjoint alarms if a desired property is not
satisfied. They primarily consider a greatest fixed point expressing satisfiability
of a desired network invariant, which they under-approximate by an analysis
over a regular domain using a dual widening operator, that starts above and
finishes below the greatest fixed point. Our work differs in that LHR abstract
away from the concrete syntax of processes whereas we instead attempt to lift
existing analysis approaches. As a consequence, LHR target a fixed communi-
cation topology, whereas in our case, which process that reads another process’
output depend on their inner workings. As pointed out by LHR, widening op-
erators have to balance convergence speed and precision. They discuss possible
design choices and settle on a (dual) operator that makes an extreme tradeoff,
by being very precise but sacrificing guaranteed convergence. On the contrary
we opt for a convergence guarantee at the cost of precision. On the other hand,
their delayed widening technique to further improve precision, is likely to also
improve our present widening further. Whereas our widening operator is less
precise, we believe LHR’s automata with powersets of signals fits immediately
our atomistic Galois insertion condition. Finally LHR’s approach depends on
determinising automata which incurs a worst case exponential blow up. They
therefore seek to avoid such determinization in future work. Since lattice-valued
regular expressions require less determinization (writing out the equations in
steps 2,3 of Fig. 6 before collapsing them in step 5 requires determinization),
they represent a step in that direction.

Our process analysis approach is inspired by an approach of Logozzo [21] for
analyzing classes of object-oriented programs. Logozzo devises a modular anal-
ysis of class invariants using contexts approximated by a lattice-valued regular
expression domain to capture calling policies. Like us, Logozzo builds on a lan-
guage inclusion ordering but he does not develop an algorithm for computing
it. Before developing the current widening operator we experimented with his
structural widening operator based on symbolic pattern matching of two given
regular expressions. QuickCheck found an issue with the definition: The original

6 These are however referred to as ‘atomic lattices’ contradicting standard termino-
logy [15, 10].
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definition [21, Fig.3] allows (odd ·even)▽r odd = (odd ▽r odd) ·even = odd ·even
which is not partially ordered with respect to its second argument under a lan-
guage inclusion ordering.

Owens, Reppy, and Turon [25] report on using derivatives over extended
regular expressions (EREs) for building a scanner generator. In doing so, they
revisit Brzozowski’s original constructions in a functional programming context.
To handle large alphabets such as Unicode, they extend EREs (conservatively)
with character sets, allowing a subset of characters of the input alphabet as
letters of their regular expressions. From our point of view, the extension can be
seen as EREs with characters over a powerset lattice. Overall their experiments
show that a well-engineered scanner generator will explore only a fraction of all
possible derivatives, and in many cases compute the minimal automaton. Our
implementation is inspired by that of Owens, Reppy, and Turon [25], in that it
uses (a) an internal syntax tree representation that maps ACI-equivalent regular
expressions to the same structure and (b) an interface of smart constructors, e.g.,
to perform simplifying reductions.

A line of work has concerned axiomatizing equivalence (and containment) of
regular expressions (REs) and of the more general Kleene algebras [27, 19, 14, 17].
We refer to Henglein and Nielsen [17] for a historical account of such develop-
ments. Grabmayer [14] gave a co-inductive axiomatization of RE equivalence
based on Brzozowski derivatives and connects it to an earlier axiomatization of
Salomaa [27]. In particular, our nullable function corresponds to Grabmayer’s
o-function, and his COMP/FIX proof system rule concludes that two REs E and
F are equivalent if o(E) = o(F ) and if all derivatives Da(E) = Da(F ) are equiv-
alent much like our co-inductive leq test for deciding containment checks for
nullable and queries all derivatives for containment. In fact, we can turn Fig. 5
into an equivalence algorithm akin to Grabmayer [14] by simply replacing the
implication in line number 6 with if nullable(r1) ⇐⇒ nullable(r2). Kozen’s ax-
iomatization of Kleene algebras and his RE completeness proof of these [19] have
a number of parallels to the current work: (a) the axiomatization contains a con-
ditional inclusion axiom similar to Arden’s lemma, (b) our k-limited partitioning
≈colr

k can be viewed as an approximation of Kozen’s Myhill-Nerode equivalence
relation that algebraically expresses state minimization, and (c) the complete-
ness proof involves solving matrices over REs (which themselves form a Kleene
algebra) in a manner reminiscent of Brzozowski’s translation scheme. To syn-
thesize a regular expression from the collapsed equations we could alternatively
have used Kozen’s approach that partitions the matrix into sub-matrices with
square sub-matrices on the diagonal and recursively solves these. Henglein and
Nielsen [17] themselves gave a co-inductive axiomatization of RE containment,
building on strong connections to type inhabitation and sub-typing.

Our work also has parallels to Concurrent Kleene Algebra (CKA) [18]. In par-
ticular, CKA is based on a set-of-traces ordering—a language inclusion ordering—
in which a set of possible traces describes program event histories, akin to our
example analysis. Furthermore, CKA’s extension over Kleene algebra to include
a parallelism operator could be a viable path forward to extend the proposed
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example analysis from a single process in a network environment to support
arbitrary process combinations.

Within model checking over timed automata [1], there are parallels between
partitioning clock interpretations over timed transition tables into regions and
our partitioning of lattice atoms into equivalence classes. The two developments
however differ in that timed Büchi and Muller automata naturally target liveness
properties (by their ability to recognize ω-regular languages), whereas we for now
target safety properties with lattice-valued regular expressions. The extension to
parametric timed automata [2] allow for enriching the expressible relations on
transitions. In the current framework this would correspond to instantiating the
lattice-valued regular expressions with a relational abstract domain. In future
work we would like to investigate the degree to which such instantiations are
possible.

7 Conclusion

We have developed lattice-valued regular expressions as an abstract domain for
static analysis including a co-inductive ordering algorithm and a widening opera-
tor. As an illustration of the parametric domain we have presented a static anal-
ysis of communication properties of a message-passing process program against
a given network communication policy. Lattice-valued regular expressions con-
stitute an intuitive and well-known formalism for expressing such policies. We
plan to reuse the domain for further message-passing analysis in the future.
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A Proofs

A.1 If ℘(C) is a complete lattice and we have a Galois insertion
then A is a complete lattice (Cousot-Cousot:JLP92, prop.9)

Proof. Given L ⊆ A, then C′ =
⋃
{γ(ℓ) | ℓ ∈ L} exists in ℘(C). Given ℓ ∈ L we

have γ(ℓ) ⊆ C′, and so by monotonicity and Galois insertion ℓ = (α ◦ γ)(ℓ) ⊑
α(C′) which proves that α(C′) is an upper bound of L.

Let l′ be another upper bound of L. For all ℓ ∈ L we have ℓ ⊑ ℓ′ and
γ(ℓ) ⊆ γ(ℓ′) by monotonicity, hence C′ ⊆ γ(ℓ′) by the definition of least upper
bound. By Galois connection α(C′) ⊑ ℓ′ which proves that α(C′) =

⊔
L.

The proof that α(
⋂
{γ(ℓ) | ℓ ∈ L}) is the greatest lower bound of L ⊆ A

follows by duality.

A.2 Galois connection and atom preservation implies γ is strict

Proof. By contradiction: assume γ(⊥) 6= ∅, i.e., there exists some c ∈ γ(⊥).
Then {c} ⊆ γ(⊥) and hence α({c}) ⊑ ⊥. But since {c} ∈ Atoms(℘(C)) and α :
Atoms(℘(C)) −→ Atoms(A) we have both α({c}) ∈ Atoms(A) and α({c}) ⊑ ⊥
which is a contradiction.

A.3 Galois insertion, atom preservation, and A is a complete lattice
implies A is atomic

Proof. Let ℓ ∈ A such that ℓ 6= ⊥. Then it must be the case that γ(ℓ) 6= ∅ (if
γ(ℓ) = ∅ = γ(⊥) by strictness and then ℓ = ⊥ since γ is injective). So there
exists c ∈ γ(ℓ), or equivalently {c} ⊆ γ(ℓ) and hence α({c}) ⊑ ℓ. which is an
atom element in A less or equal to ℓ.

A.4 Galois insertion, atom preservation, A is a complete lattice
implies A is atomistic (or atomically generated)

Proof. We have already argued that A is atomic.
Let ℓ ∈ A with ℓ 6= ⊥ then γ(ℓ) 6= ∅. But then γ(ℓ) = ∪{c}⊆γ(ℓ){c} and hence

ℓ = (α ◦ γ)(ℓ) (Galois insertion)

= α(∪{c}⊆γ(ℓ){c}) (by above)

=
⊔

{c}⊆γ(ℓ)

α({c}) (α a CJM)

=
⊔

α({c})⊑ℓ

α({c}) (Galois connection)

⊑
⊔

a⊑ℓ

a (by def. ⊔)

⊑ ℓ (by def. ⊔)

By anti symmetry ℓ =
⊔

a⊑ℓ a, hence A is atomistic (or atomically generated)
since ℘(C) is.
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A.5 Galois insertion, atom preservation, A is a complete lattice
implies α : Atoms(℘(C)) −→ Atoms(A) is surjective

Proof. Let a ∈ Atoms(A) be given. Since α : ℘(C) −→ A is surjective there
exists cs ∈ ℘(C) such that α(cs) = a. Since ℘(C) is atomistic cs = ∪ci∈cs{ci} and
a = α(cs) = α(∪ci∈cs{ci}) =

⋃
ci∈cs α({ci}) since α is a complete join morphism.

The elements in the combination are atoms (by atom preservation) and the
combination is non-empty (otherwise a = ⊥). But then for all ci: α({ci}) ⊑ a
and since both sides are atoms (non-bottom) we have α({ci}) = a, which means
that there exists {ci} ∈ Atoms(℘(C)) such that α({ci}) = a as requested.

A.6 Non-overlapping atoms: ∀a, a ∈ Atoms(A). a 6= a′ =⇒
γ(a) ∩ γ(a′) = ∅

Proof. We prove the contra-positive statement: ∀a, a ∈ Atoms(A). γ(a)∩γ(a′) 6=
∅ =⇒ a = a′. Let a, a′ ∈ Atoms(A) be given. Assume that γ(a) ∩ γ(a′) 6= ∅,
i.e., there exists c ∈ γ(a) ∩ γ(a′). But then

c ∈ γ(a) ∧ c ∈ γ(a′)

=⇒ {c} ⊆ γ(a) ∧ {c} ⊆ γ(a′) (by def. ∩)

=⇒ α({c}) ⊑ a ∧ α({c}) ⊑ a′ (by def. GC)

=⇒ α({c}) = a ∧ α({c}) = a′ (by def. atom)

=⇒ a = α({c}) = a′ (by transitivity)

A.7 In a Galois insertion setting: ∀ℓ ∈ A, a ∈ Atoms(A). a ⊑ ℓ ⇐⇒
γ(a) ⊆ γ(ℓ)

Proof.

a ⊑ ℓ =⇒ γ(a) ⊆ γ(ℓ): Follows immediately from monotonicity of γ.
γ(a) ⊆ γ(ℓ) =⇒ a ⊑ ℓ: Assume γ(a) ⊆ γ(ℓ). Since we have a Galois insertion:

a = (α ◦ γ)(a) ⊑ ℓ.

A.8 A Kleene lemma: ∀r ∈ R̂A. L(r∗) = L(r)∗ (= ∪i≥0L(r)i ) =
(L(r) \ {ǫ})∗

Proof. By definition L(r∗) = ∪i≥0 L(r)i and so is L(r)∗ = ∪i≥0 L(r)i. Clearly,
for any i. (L(r)\{ǫ})i ⊆ L(r)i. Similarly, if w = w1 . . . wi ∈ L(r)i with wj ∈ L(r)
(j ∈ {1, . . . , i}) then w ∈ ∪i≥j≥0(L(r) \ {ǫ})j by induction in i:

case i = 0: For i = 0 then w = ǫ and ǫ ∈ ∪0≥j≥0(L(r) \ {ǫ})j = (L(r) \ {ǫ})0 =
{ǫ}.

case i = k + 1: For i = k+1 then w = w1w2 where w1 ∈ L(r) and w2 ∈ L(r)k .
But then w2 ∈ ∪k≥j≥0(L(r) \ {ǫ})j by the IH. If w1 = ǫ then w1w2 =
w2 ∈ ∪k≥j≥0(L(r) \ {ǫ})j ⊂ ∪k+1≥j≥0(L(r) \ {ǫ})j. If w1 = cw′

1 then w1 =
cw′

1 ∈ L(r) \ {ǫ} and hence cw′
1w2 ∈ (L(r) \ {ǫ})(∪k≥j≥0(L(r) \ {ǫ})j) =

(∪k+1≥j≥1(L(r) \ {ǫ})
j) ⊂ ∪k+1≥j≥0(L(r) \ {ǫ})

j.
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A.9 All lattice-valued regular expressions can be written as a sum
(Theorem 1)

∀r ∈ R̂A. r ≈
∑

a∈Atoms(A)

a · D̂a(r) + δ(r)

Proof. We proceed by structural induction on r. Let r ∈ R̂A be given.

case ∅:

∑

a∈Atoms(A)

a · D̂a(∅) + δ(∅) ≈
∑

a∈Atoms(A)

a · ∅+ ∅ ≈ ∅ (by def. of D̂,δ)

case ǫ:

∑

a∈Atoms(A)

a · D̂a(ǫ) + δ(ǫ) ≈
∑

a∈Atoms(A)

a · ∅+ ǫ ≈ ǫ (by def. of D̂,δ)

case ℓ:

∑

a∈Atoms(A)

a · D̂a(ℓ) + δ(ℓ) ≈
∑

a∈Atoms(A)
a⊑ℓ

a · ǫ+
∑

a∈Atoms(A)
a 6⊑ℓ

a · ∅+ ∅

(by def. of D̂,δ, + assoc., comm.)

≈
∑

a∈Atoms(A)
a⊑ℓ

a (∅ neutral for +, ∅ for ·)

The question is now whether ℓ ≈
∑

a∈Atoms(A)
a⊑ℓ

a. We argue for inclusion in

both directions:

– For each a ∈ Atoms(A) where a ⊑ ℓ we have L(a) = γ(a) ⊆ γ(ℓ) = L(ℓ)
by monotonicity of γ and hence L(

∑
a⊑ℓ a) =

⋃
a⊑ℓ L(a) ⊆ L(ℓ) or

correspondingly
∑

a⊑ℓ a ⊏∼ ℓ.

– Let c ∈ L(l) = γ(ℓ) be given. But then {c} ⊆ γ(ℓ) or equivalently a′ =
α({c}) ⊑ ℓ with a′ being an atom. Since {c} ⊆ (γ◦α)({c}) = γ(a′) ⊆ γ(ℓ)
it is clearly included in ∪a⊑ℓγ(a).

case r∗: First notice that r∗ ≈ r · r∗ + ǫ.
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r∗ ≈ (r \ ǫ)∗ (by Lemma A.8)

≈ (r \ ǫ) · (r \ ǫ)∗ + ǫ (by above)

≈ (r \ ǫ) · r∗ + ǫ (by Lemma A.8)

≈ ((
∑

a∈Atoms(A)

a · D̂a(r) + δ(r)) \ ǫ) · r∗ + ǫ (by IH)

≈ (
∑

a∈Atoms(A)

a · D̂a(r)) · r
∗ + ǫ (by def. δ)

≈
∑

a∈Atoms(A)

a · D̂a(r) · r
∗ + ǫ (· distributive over +)

≈
∑

a∈Atoms(A)

a · D̂a(r
∗) + ǫ (by def. D̂)

≈
∑

a∈Atoms(A)

a · D̂a(r
∗) + δ(r∗) (by def. δ)

case r1 · r2:

r1 · r2 ≈ (
∑

a∈Atoms(A)

a · D̂a(r1) + δ(r1)) · r2 (by IH)

≈
∑

a∈Atoms(A)

a · D̂a(r1) · r2 + δ(r1) · r2 (· distributive over +)

≈

{∑
a∈Atoms(A) a · D̂a(r1) · r2 + ǫ · r2 ǫ ⊏∼ r1∑
a∈Atoms(A) a · D̂a(r1) · r2 + ∅ · r2 ǫ 6⊏∼ r1

(by def. δ)

≈

{∑
a∈Atoms(A) a · D̂a(r1) · r2 + r2 ǫ ⊏∼ r1∑
a∈Atoms(A) a · D̂a(r1) · r2 + ∅ ǫ 6⊏∼ r1

(simplify)

≈

{∑
a∈Atoms(A) a · D̂a(r1) · r2 +

∑
a∈Atoms(A) a · D̂a(r2) + δ(r2) ǫ ⊏∼ r1∑

a∈Atoms(A) a · D̂a(r1) · r2 + ∅ ǫ 6⊏∼ r1

(by IH)

≈

{∑
a∈Atoms(A)(a · D̂a(r1) · r2 + a · D̂a(r2)) + δ(r2) ǫ ⊏∼ r1∑
a∈Atoms(A) a · D̂a(r1) · r2 + ∅ ǫ 6⊏∼ r1

(+ associative)

≈

{∑
a∈Atoms(A) a · (D̂a(r1) · r2 + D̂a(r2)) + δ(r2) ǫ ⊏∼ r1∑
a∈Atoms(A) a · D̂a(r1) · r2 + ∅ ǫ 6⊏∼ r1

(· distributive over +)
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≈

{∑
a∈Atoms(A) a · D̂a(r1 · r2) + δ(r2) ǫ ⊏∼ r1∑
a∈Atoms(A) a · D̂a(r1 · r2) + ∅ ǫ 6⊏∼ r1

(by def. D̂)

≈

{∑
a∈Atoms(A) a · D̂a(r1 · r2) + ǫ ǫ ⊏∼ r1 ∧ ǫ ⊏∼ r2∑
a∈Atoms(A) a · D̂a(r1 · r2) + ∅ ǫ 6⊏∼ r1 ∨ ǫ 6⊏∼ r2

(by def. δ)

≈
∑

a∈Atoms(A)

a · D̂a(r1 · r2) + δ(r1 · r2) (by def. δ)

case ∁ r: First we realize that δ(r) = ∅ ⇐⇒ δ(∁ r) = ǫ

∁ r ≈ ∁ (
∑

a∈Atoms(A)

a · D̂a(r) + δ(r)) (by IH)

≈ &
a∈Atoms(A)

∁ (a · D̂a(r)) & ∁ (δ(r)) (by De Morgan’s law)

≈
∑

a∈Atoms(A)

a · ∁ (D̂a(r)) + δ(∁ r)

(by above and non-overlapping atoms)

≈
∑

a∈Atoms(A)

a · D̂a(∁ r) + δ(∁ r) (by def. of D̂)

case r1 + r2:

r1 + r2 ≈
∑

a∈Atoms(A)

a · D̂a(r1) + δ(r1) +
∑

a∈Atoms(A)

a · D̂a(r2) + δ(r2)

(by IH)

≈
∑

a∈Atoms(A)

(a · D̂a(r1) + a · D̂a(r2)) + δ(r1) + δ(r2)

(by non-overlapping atoms, + assoc., comm.)

≈
∑

a∈Atoms(A)

a · (D̂a(r1) + D̂a(r2)) + δ(r1) + δ(r2)

(· distributive over +)

≈
∑

a∈Atoms(A)

a · D̂a(r1 + r2) + δ(r1) + δ(r2) (by def. of D̂)

≈
∑

a∈Atoms(A)

a · D̂a(r1 + r2) + δ(r1 + r2) (by def. of δ)
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case r1 & r2:

r1 & r2 ≈ (
∑

a∈Atoms(A)

a · D̂a(r1) + δ(r1)) & (
∑

a∈Atoms(A)

a · D̂a(r2) + δ(r2))

(by IH)

≈
∑

a∈Atoms(A)

(a · D̂a(r1) & a · D̂a(r2)) + (δ(r1)& δ(r2))

(by non-overlapping atoms, + assoc., comm.)

≈
∑

a∈Atoms(A)

a · (D̂a(r1)& D̂a(r2)) + (δ(r1)& δ(r2))

(· distributive over &)

≈
∑

a∈Atoms(A)

a · D̂a(r1 & r2) + (δ(r1)& δ(r2)) (by def. of D̂)

≈
∑

a∈Atoms(A)

a · D̂a(r1 & r2) + δ(r1 & r2) (by def. of δ)

A.10 Meaning of derivatives (Lemma 2): γ(a)\L(r) = L(D̂a(r))

Proof. First notice that

L(r) = L(
∑

a∈Atoms(A)

a · D̂a(r) + δ(r)) =
⋃

a∈Atoms(A)

γ(a) · L(D̂a(r)) ∪ L(δ(r))

Now consider

γ(a)\L(r) = {w | ∀c ∈ γ(a). cw ∈ L(r)}

= {w | ∀c ∈ γ(a). cw ∈ (
⋃

a′∈Atoms(A)

γ(a′) · L(D̂a′(r)) ∪ L(δ(r)))}

(by above)

= {w | ∀c ∈ γ(a). cw ∈
⋃

a′∈Atoms(A)

γ(a′) · L(D̂a′(r))}

(δ at most {ǫ})

= {w | ∀c ∈ γ(a). cw ∈ γ(a) · L(D̂a(r))} (by A.6)

= L(D̂a(r)) (simplify)

where we have generalized the notation

c\L = {w | cw ∈ L} to sets cs\L = {w | ∀c ∈ cs. cw ∈ L}
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A.11 D̂ monotone in second argument (Lemma 3)

Proof. Let r ⊏∼ r′ and atom a ∈ Atoms(A) be given. By definition we have

L(r) ⊆ L(r′). We wish to show D̂a(r) ⊏∼ D̂a(r
′) or equivalently L(D̂a(r)) ⊆

L(D̂a(r
′))

L(D̂a(r)) = {w | ∀c ∈ γ(a). cw ∈ L(r)} (by Lemma 2/A.10)

⊆ {w | ∀c ∈ γ(a). cw ∈ L(r′)} (by assumption)

= L(D̂a(r)) (by Lemma 2/A.10)

A.12 nullable correct (Lemma 4): ∀r ∈ R̂A. ǫ ⊏∼ r ⇐⇒ nullable(r)

First notice that ǫ ⊏∼ r ⇐⇒ {ǫ} = L(ǫ) ⊆ L(r) by definition of L and ⊏∼.

Proof. By structural induction on r. Let r ∈ R̂A be given.

case ∅: Since ǫ 6⊏∼ ∅ the left-to-right implication holds vacuously. nullable(∅) =
false hence the right-to-left implication also holds vacuously.

case ǫ: ǫ ⊏∼ ǫ and nullable(ǫ) both hold, hence the biimplication holds.

case ℓ: ǫ 6⊏∼ ℓ, hence the left-to-right implication holds vacuously. nullable(ℓ) =
false hence the right-to-left implication also holds vacuously.

case r∗: ǫ ⊏∼ r∗ holds if and only if ǫ ∈ L(r∗). The latter holds by definition and
so does nullable(r∗) by definition, hence the biimplication holds.

case r1 · r2: ǫ ⊏∼ r1 · r2 holds if and only if ǫ ∈ L(r1 · r2) = L(r1) · L(r2) if
and only if ǫ ∈ L(r1) and ǫ ∈ L(r2) if and only if ǫ ⊏∼ r1 and ǫ ⊏∼ r2. By
two applications of the IH this is equivalent to nullable(r1) and nullable(r2)
which is the definition of nullable(r1 · r2), hence the biimplication holds.

case ∁ r: ǫ ⊏∼ ∁ r which is equivalent to ǫ ∈ L(∁ r) = ℘(Σ∗) \ L(r) if and only if
ǫ /∈ L(r) or equivalently: ǫ 6⊏∼ r. By application of the IH this is equivalent to
nullable(r) = false which holds if and only if nullable(∁ r) = ¬nullable(r) =
true hence the biimplication holds.

case r1 + r2: ǫ ⊏∼ r1 + r2 holds if and only if ǫ ∈ L(r1 + r2) = L(r1) ∪ L(r2) if
and only if ǫ ∈ L(r1) or ǫ ∈ L(r2) if and only if ǫ ⊏∼ r1 or ǫ ⊏∼ r2. By two
applications of the IH this is equivalent to nullable(r1) or nullable(r2) which
is the definition of nullable(r1 + r2), hence the biimplication holds.

case r1 & r2: ǫ ⊏∼ r1 & r2 holds if and only if ǫ ∈ L(r1 & r2) = L(r1) ∩ L(r2) if
and only if ǫ ∈ L(r1) and ǫ ∈ L(r2) if and only if ǫ ⊏∼ r1 and ǫ ⊏∼ r2. By
two applications of the IH this is equivalent to nullable(r1) and nullable(r2)
which is the definition of nullable(r1 & r2), hence the biimplication holds.
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B Finitely many dissimilar derivatives (up to ACI):

∀r ∈ R̂A. ∃n. |{D̂s(r) | s ∈ Atoms(A)∗}
=ACI

| ≤ n

(Lemma 5)

Proof.

case ∅: |{D̂s(∅)}ACI | = |{∅}ACI| = 1

case ǫ: |{D̂s(ǫ)}ACI | = |{ǫ, ∅}ACI| = 2

case ℓ: |{D̂s(ℓ)}ACI | = |{ℓ, ǫ, ∅}ACI| = 3
case r1 · r2: We seek a syntactic characterization of all derivatives. As an ex-

ample, consider the derivation wrt. a two-element sequence a1a2:

D̂a1a2(r1 · r2) = D̂a2(D̂a1(r1 · r2))

=

{
D̂a2(D̂a1(r1) · r2 + D̂a1(r2)) ǫ ⊏∼ r1

D̂a2(D̂a1(r1) · r2) ǫ 6⊏∼ r1

=

{
D̂a2(D̂a1(r1) · r2) + D̂a2(D̂a1(r2)) ǫ ⊏∼ r1

D̂a2(D̂a1(r1) · r2) ǫ 6⊏∼ r1

=





D̂a2(D̂a1(r1)) · r2 + D̂a2(r2) + D̂a2(D̂a1(r2)) ǫ ⊏∼ r1 ∧ ǫ ⊏∼ D̂a1(r1)

D̂a2(D̂a1(r1)) · r2 + D̂a2(D̂a1(r2)) ǫ ⊏∼ r1 ∧ ǫ 6⊏∼ D̂a1(r1)

D̂a2(D̂a1(r1)) · r2 + D̂a2(r2) ǫ 6⊏∼ r1 ∧ ǫ ⊏∼ D̂a1(r1)

D̂a2(D̂a1(r1)) · r2 ǫ 6⊏∼ r1 ∧ ǫ 6⊏∼ D̂a1(r1)

=





D̂a1a2(r1) · r2 + D̂a2(r2) + D̂a1a2(r2) ǫ ⊏∼ r1 ∧ ǫ ⊏∼ D̂a1(r1)

D̂a1a2(r1) · r2 + D̂a1a2(r2) ǫ ⊏∼ r1 ∧ ǫ 6⊏∼ D̂a1(r1)

D̂a1a2(r1) · r2 + D̂a2(r2) ǫ 6⊏∼ r1 ∧ ǫ ⊏∼ D̂a1(r1)

D̂a1a2(r1) · r2 ǫ 6⊏∼ r1 ∧ ǫ 6⊏∼ D̂a1(r1)

The general pattern of the derivatives is a certain term and a number of
optional terms, which we can view as a set, due to the ACI properties. We
capture the optional terms with the following notation:

r1[ + r2]
b =

{
r1 + r2 if b = 1

r1 if b = 0

Hence a variable b ∈ {0, 1} helps to describe the syntactic shape of the two
sums. We utilize this notation to prove the following identity by structural
induction on s:
For all r1, r2 ∈ R̂A, s = a1 . . . an ∈ Atoms(A)

∗
. ∃b1, . . . , bn ∈ {0, 1} such that

D̂a1...an
(r1 · r2) = D̂a1...an

(r1) · r2 [+ D̂a1...an
(r2)]

b1 . . . [+ D̂an
(r2)]

bn

where n ≥ 0.
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case s = ǫ:

D̂ǫ(r1 · r2) = r1 · r2 = D̂ǫ(r1) · r2 (by def. D̂)

In this base case there are no variables to pick (n = 0).

case s = a0s
′: where s′ = a1 . . . an

D̂a0s′(r1 · r2)

= D̂s′(D̂a0(r1 · r2)) (by def. D̂s)

=

{
D̂s′(D̂a0(r1) · r2) ǫ 6⊏∼ r1

D̂s′(D̂a0(r1) · r2 + D̂a0(r2)) ǫ ⊏∼ r1
(by def. D̂a)

=

{
D̂s′(D̂a0(r1)) · r2 [+ D̂s′(r2)]

b1 . . . [+ D̂an
(r2)]

bn ǫ 6⊏∼ r1

D̂s′(D̂a0(r1)) · r2 [+ D̂s′(r2)]
b1 . . . [+ D̂an

(r2)]
bn + D̂s′(D̂a0(r2)) ǫ ⊏∼ r1

(by IH)

=

{
D̂a0s′(r1) · r2 [+ D̂s′(r2)]

b1 . . . [+ D̂an
(r2)]

bn ǫ 6⊏∼ r1

D̂a0s′(r1) · r2 [+ D̂s′(r2)]
b1 . . . [+ D̂an

(r2)]
bn + D̂a0s′(r2) ǫ ⊏∼ r1

(by def. D̂s)

= D̂a0s′(r1) · r2 [+ D̂a0s′(r2)]
b0 [+ D̂s′(r2)]

b1 . . . [+ D̂an
(r2)]

bn

(by assoc.,comm. of +)

where we choose b0 = 0 when ǫ 6⊏∼ r1 and b0 = 1 when ǫ ⊏∼ r1.

Since all derivatives can be characterized by the above identity, there are
only as many derivatives as there are (ACI) different sums of this form.
There are 2dr2 choices for the variables and dr1 choices for the first term,
which yields at most dr12

dr2 different terms.

case r∗: We seek a similar syntactic characterization of the derivatives of Kleene
star expressions. We prove the following identity by structural induction:

For all r ∈ R̂A, a1 . . . an ∈ Atoms(A)
+
. ∃b2, . . . , bn ∈ {0, 1} such that

D̂a1...an
(r∗) = D̂a1...an

(r) · r∗ [+ D̂a2...an
(r) · r∗]b2 . . . [+ D̂an

(r) · r∗]bn

where n ≥ 1.

case s = a0:

D̂a0(r
∗) = D̂a0(r) · r

∗ (by def. D̂a)

Again in this base case there are no variables to pick (n = 1).
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case s = a0s
′: where s′ = a1 . . . an

D̂a0s′(r
∗)

= D̂s′(D̂a0(r
∗)) (by def. D̂s)

= D̂s′(D̂a0(r) · r
∗) (by def. D̂a)

= D̂a1...an
(D̂a0(r)) · r

∗ [+ D̂a1...an
(r∗)]b1 . . . [+ D̂an

(r∗)]bn

(by above · argument)

= D̂a0a1...an
(r) · r∗ [+ D̂a1...an

(r∗)]b1 . . . [+ D̂an
(r∗)]bn (by def. D̂s)

= D̂a0a1...an
(r) · r∗ [+ D̂a1...an

(r) · r∗ [+ D̂a2...an
(r) · r∗]b

1
2 . . . [+ D̂an

(r) · r∗]b
1
n ]b1

. . . [+ D̂an
(r) · r∗]bn

(by n applications of the IH)

= D̂a0a1...an
(r) · r∗ [+ D̂a1...an

(r) · r∗]b1 [+ D̂a2...an
(r) · r∗]b1∧b12 . . . [+ D̂an

(r) · r∗]b1∧b1n

. . . [+ D̂an
(r) · r∗]bn

(by def. of [−]b)

= D̂a0a1...an
(r) · r∗ [+ D̂a1...an

(r) · r∗]b1 . . . [+ D̂an
(r) · r∗](b1∧b12)∨···∨bn

(by ACI)

Since the first term is non-optional, there are at most 2dr − 1 syntactically
unique derivatives of this form. Including the original term, r∗ for the case
n = 0, that leaves at most 2dr − 1 + 1 = 2dr different derivatives.

case ∁ r:
We prove D̂s(∁ r) = ∁ (D̂s(r)) by structural induction on s.

case ǫ:

D̂ǫ(∁ r) = ∁ r = ∁ (D̂ǫ(r)) (by def. of D̂ǫ)

case as:

D̂as(∁ r) = D̂s(D̂a(∁ r)) (by def. of D̂s)

= D̂s(∁ (D̂a(r))) (by def. of D̂a)

= ∁ (D̂s(D̂a(r))) (by IH)

= ∁ (D̂as(r)) (by def. of D̂s)

Hence |{D̂s(∁ r)}ACI | = |{∁ D̂s(r)}ACI | = dr
case r1 + r2:

We prove D̂s(r1 + r2) = D̂s(r1) + D̂s(r2) by structural induction on s.

case ǫ:

D̂ǫ(r1 + r2) = r1 + r2 = D̂ǫ(r1) + D̂ǫ(r2) (by def. of D̂ǫ)
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case as:

D̂as(r1 + r2) = D̂s(D̂a(r1 + r2)) (by def. of D̂s)

= D̂s(D̂a(r1) + D̂a(r2)) (by def. of D̂a)

= D̂s(D̂a(r1)) + D̂s(D̂a(r2)) (by IH)

= D̂as(r1) + D̂as(r2) (by def. of D̂s)

Hence |{D̂s(r1 + r2)}ACI | = |{D̂s(r1) + D̂s(r2)}ACI | ≤ dr1dr2
case r1 & r2:

We prove D̂s(r1 & r2) = D̂s(r1)& D̂s(r2) by structural induction on s.
case ǫ:

D̂ǫ(r1 & r2) = r1 & r2 = D̂ǫ(r1)& D̂ǫ(r2) (by def. of D̂ǫ)

case as:

D̂as(r1 & r2) = D̂s(D̂a(r1 & r2)) (by def. of D̂s)

= D̂s(D̂a(r1)& D̂a(r2)) (by def. of D̂a)

= D̂s(D̂a(r1))& D̂s(D̂a(r2)) (by IH)

= D̂as(r1)& D̂as(r2) (by def. of D̂s)

Hence |{D̂s(r1 & r2)}ACI | = |{D̂s(r1)& D̂s(r2)}ACI | ≤ dr1dr2
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C Compatible orderings

C.1 gfp is well-defined: F monotone

Proof. Let �′⊆�′′ be given.

F (�′) = {(r1, r2) | nullable(r1) =⇒ nullable(r2)}

∩ {(r1, r2) | ∀ atoms a : (D̂a(r1), D̂a(r2)) ∈�
′} (by def. of F )

⊆ {(r1, r2) | nullable(r1) =⇒ nullable(r2)}

∩ {(r1, r2) | ∀ atoms a : (D̂a(r1), D̂a(r2)) ∈�
′′} (by assumption)

= F (�′′) (by def. of F )

C.2 ∀r, r′ ∈ R̂A. leq test(r, r′) returns true ⇐⇒ r �̇ r′

Proof.

=⇒: Assuming leq test(r, r′) returns true, we let memo tbl denote the final
table at return time. We can then define r1 �′ r2 iff (r1, r2) ∈ACI memo tbl

which satisfies r �′ r′. Furthermore the relation �′ satisfies the require-
ment �′ ⊆ F (�′) as (r1, r2) ∈ACI memo tbl implies (nullable(r1) =⇒

nullable(r2)) and ∀ atoms a : (D̂a(r1), D̂a(r2)) ∈ACI memo tbl. Since gfpF
is the least upper bound of all pre-fixed points, it is greater than or equal to
the pre-fixed point �′ in particular, and hence r �̇ r′.

⇐=: Assuming � ⊆ F (�) and r � r′ we argue that leq test(r, r′) returns
true. By assumption, any arguments (r1, r2) passed to leq memo satisfies

(nullable(r1) =⇒ nullable(r2)) and ∀ atoms a : D̂a(r1) � D̂a(r2). This
ensures that we will never encounter the else-branch in any of the recursive
calls. This leaves the possibility of divergence: Since there are only finitely
many derivatives of a regular expression up to ACI, at a finite depth of
memorized recursive calls in each branch of the call tree we will encounter a
memorized pair and return. As a consequence we return true eventually.

C.3 ∀r, r′ ∈ R̂A. r ⊏∼ r′ ⇐⇒ r �̇ r′

Proof.

=⇒: By co-induction: We prove ⊏∼⊆ F (⊏∼).

Let r, r′ ∈ R̂A be given and assume r ⊏∼ r′. We now show (r, r′) ∈ F (⊏∼).

For any a ∈ Atoms(A) we have D̂a(r) ⊏∼ D̂a(r
′) by monotonicity of D̂

(Lemma 3/A.11). To argue for nullable by Lemma 4/A.12 we know that
nullable(r) ⇐⇒ ǫ ⊏∼ r ⇐⇒ ǫ ∈ L(r). But then ǫ ∈ L(r′) and hence
nullable(r′).

⇐=: We prove ∀w, r �̇ r′. w ∈ L(r) =⇒ w ∈ L(r′) by structural induction on
w.
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case |w| = 0: w = ǫ ∈ L(r), but then nullable(r) and hence nullable(r′) by
the assumption r �̇ r′. By the correctness of nullable we therefore have
ǫ ⊏∼ r′ or ǫ ∈ L(r′).

case |w| = k + 1: We have w = cw′ and |w′| = k. But then there ex-
ists a = α({c}) ∈ Atoms(A). From the r �̇ r′ assumption, we know

D̂a(r) �̇ D̂a(r
′). By the meaning of derivatives (Lemma 2/A.10) we fur-

ther have w′ ∈ L(D̂a(r)) and hence by the IH w′ ∈ L(D̂a(r
′)). But then

cw′ ∈ γ(a) · L(D̂a(r
′)) = L(a) · L(D̂a(r

′)) ⊆ L(r′) by the Brzozowski
equation (Theorem 1/A.9).
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D Widening proof

D.1 The widening algorithm computes a widening

(a) the result is greater or equal to any of the arguments and
(b) given an increasing chain r0 ⊏∼ r1 ⊏∼ r2 ⊏∼ . . . the resulting widening sequence

defined as r0 = r0 and rk+1 = rk ▽ rk+1 stabilizes after a finite number of
steps.

Proof.

(a) By definition r ⊏∼ r0 and r′ ⊏∼ r0. By theorem 1 the (solution to the) charac-
teristic equation for R0 therefore accepts both L(r) and L(r′). Collecting the
coefficients ri ·Rk+ rj ·Rk of each variable Rk into (ri+ rj) ·Rk furthermore
preserves the solution of the enclosing equation:

L(ri · Rk + rj · Rk)

= L(ri · Rk) ∪ L(rj · Rk)

= (L(ri) · L(Rk)) ∪ (L(rj) · L(Rk))

= (L(ri) ∪ L(rj)) · L(Rk)

= L(ri + rj) · L(Rk)

= L((ri + rj) · Rk)

Collapsing equations

Ri ≈
∑

k

rik · Rk + δ(ri) and

Rj ≈
∑

k

rjk ·Rk + δ(rj) into

Rij ≈
∑

k

(rik + rjk) ·Rk + δ(ri) + δ(rj)

preserves or enlarges the accepted language, as L(
∑

k rik ·Rk+δ(ri)) ⊆ L(
∑

k(rik+rjk)·
Rk+δ(ri)+δ(rj)) and L(

∑
k rjk ·Rk+δ(rj))⊆L(

∑
k(rik+rjk)·Rk+δ(ri)+δ(rj)).

As a consequence the resulting regular expression rres is increasing with re-
spect to both widening arguments: r ⊏∼ rres and r′ ⊏∼ rres .

(b) Since the operator is increasing in both arguments by (a), the widening
sequence is increasing: r0 = r0 ⊏∼ r0 ▽ r1 ⊏∼ (r0 ▽ r1)▽ r2 ⊏∼ . . . . Assume for
the sake of contradiction that there exists a chain such that the widening
sequence does not stabilize. This would mean that we can select an infinite
sub-chain of strictly increasing elements: r′0 ⊏ r′0 ▽ r′1 ⊏ (r′0 ▽ r′1)▽ r′2 ⊏ . . . .
This would again mean that the fixed, finite number of equivalence classes
(representing states in the derivatives-as-automata-view) could be used to
describe infinitely many regular languages. But for a finite alphabet and a
fixed number of “automata” states, this is not the case: a contradiction. As
a consequence the widening sequence must stabilize in a finite number of
steps.
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E r̂ange computes a partition

∀r ∈ R̂A, a, a
′ ∈ Atoms(A).

[a1], . . . , [an]= r̂ange(r) ∧ a, a′∈ [ai] =⇒ D̂a(r)=D̂a′ (r)

Proof. Let r ∈ R̂A and a, a′ ∈ Atoms(A) be given and let [a1], . . . , [an] =
r̂ange(r) and a, a′∈ [ai] for some 1 ≤ i ≤ n.

case ∅: r̂ange(∅) = ̂to equivs (⊤) and by the first property above a ⊑ ⊤∧a′ ⊑ ⊤
or a 6⊑ ⊤ ∧ a′ 6⊑ ⊤ of which the former holds for any a and a′. Clearly
D̂a(∅) = ∅ = D̂a′(∅).

case ǫ: r̂ange(ǫ) = ̂to equivs (⊤) and by the first property above a ⊑ ⊤∧a′ ⊑ ⊤
or a 6⊑ ⊤ ∧ a′ 6⊑ ⊤ of which the former holds for any a and a′. Clearly
D̂a(ǫ) = ∅ = D̂a′(ǫ).

case ℓ: r̂ange(ℓ) = ̂to equivs (ℓ) and by the first property above a ⊑ ℓ ∧ a′ ⊑ ℓ

or a 6⊑ ℓ ∧ a′ 6⊑ ℓ. In the first case we get D̂a(ℓ) = ǫ = D̂a′(ℓ) and in the

second case we get D̂a(ℓ) = ∅ = D̂a′(ℓ).
case r∗: If [a1], . . . , [an] = r̂ange(r∗) = r̂ange(r) and a, a′ ∈ [ai] for some 1 ≤

i ≤ n then by the IH D̂a(r) = D̂a′(r). But then D̂a(r
∗) = D̂a(r) · r∗ =

D̂a′(r) · r∗ = D̂a′(r∗).
case r1 · r2:

subcase ǫ ⊏∼ r1: If [a1], . . . , [an] = r̂ange(r1 · r2) = ôverlay (r̂ange(r1), r̂ange(r2))
and a, a′ ∈ [ai] for some 1 ≤ i ≤ n then by the second property above
[b] = r̂ange(r1) and a, a′ ∈ [bj ] for some [bj ]in[b] and [c] = r̂ange(r2)

and a, a′ ∈ [ck] for some [ck]in[c]. But then by two applications of the

IH D̂a(r1) = D̂a′(r1) and D̂a(r2) = D̂a′(r2) and therefore D̂a(r1 · r2) =

D̂a(r1) · r2 + D̂a(r2) = D̂a′(r1) · r2 + D̂a′(r2) = D̂a′(r1 · r2).
subcase ǫ 6⊏∼ r1: If [a1], . . . , [an] = r̂ange(r1 · r2) = r̂ange(r1) and a, a′ ∈

[ai] for some 1 ≤ i ≤ n then by the IH D̂a(r1) = D̂a′(r1). But then

D̂a(r1 · r2) = D̂a(r1) · r2 = D̂a′(r1) · r2 = D̂a′(r1 · r2).
case ∁ r: If [a1], . . . , [an] = r̂ange(∁ r) = r̂ange(r) and a, a′ ∈ [ai] for some

1 ≤ i ≤ n then by the IH D̂a(r) = D̂a′(r). But then D̂a(∁ r) = ∁ D̂a(r) =

∁ D̂a′(r) = D̂a′(∁ r).

case r1 + r2: If [a1], . . . , [an] = r̂ange(r1 + r2) = ôverlay (r̂ange(r1), r̂ange(r2))
amd a, a′ ∈ [ai] for some 1 ≤ i ≤ n then by the second property above
[b] = r̂ange(r1) and a, a′ ∈ [bj ] for some [bj ]in[b] and [c] = r̂ange(r2) and

a, a′ ∈ [ck] for some [ck]in[c]. But then by two applications of the IH D̂a(r1) =

D̂a′(r1) and D̂a(r2) = D̂a′(r2) and therefore D̂a(r1 + r2) = D̂a(r1)+D̂a(r2) =

D̂a′(r1) + D̂a′(r2) = D̂a′(r1 + r2).

case r1 & r2: If [a1], . . . , [an] = r̂ange(r1 + r2) = ôverlay (r̂ange(r1), r̂ange(r2))
amd a, a′ ∈ [ai] for some 1 ≤ i ≤ n then by the second property above
[b] = r̂ange(r1) and a, a′ ∈ [bj] for some [bj ]in[b] and [c] = r̂ange(r2)
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and a, a′ ∈ [ck] for some [ck]in[c]. But then by two applications of the

IH D̂a(r1) = D̂a′(r1) and D̂a(r2) = D̂a′(r2) and therefore D̂a(r1 & r2) =

D̂a(r1)& D̂a(r2) = D̂a′(r1)& D̂a′(r2) = D̂a′(r1 & r2).

F Finite instantiations

We immediately satisfy that ̂to equivs produces a partition and that ôverlay
preserves it. Property 1 holds immediately: any two atoms a, a′ both belonging to
a singleton equivalence class [ai] are necessarily the same. Hence either a = a′ ⊑ ℓ
or a = a′ 6⊑ ℓ by the definition of a partial order. Furthermore Property 2 follows
directly for a constant partition: if two atoms a, a′ belong to the same equivalence

class [ai] in the constant partition returned by ôverlay , they also belong to the
same equivalence class [ai] in the constant partitions provided as arguments.
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G The interval partition

G.1 ̂to equivs computes a partition and ̂overlay preserves partition

Proof. (a) In all four cases ̂to equivs computes a partition of the atoms [i; i].

(b) We argue for ôverlay ’s preservation of partitions by induction: in the base

case ôverlay computes a partition into a single equivalence class, representing
all atoms from l1 = l2 to +∞. In the inductive step there are three subcases to
consider.

subcase u1 = u2: If the leftmost upper bounds are identical, by the IH ôverlay (R′
1, R

′
2)

computes a partition from the identical leftmost lower bound u1+1 = u2+1.
Together with the equivalence class [l1;u1] that represents a partition of all
atoms from l1 = l2 to +∞.

subcase u1 < u2: Since the first argument itself is a partition (represented as
a sorted list of intervals), the leftmost lower bound of R′

1 is u1 + 1. By

the IH ôverlay (R′
1, [u1 + 1;u2] :: R

′
2) computes a partition from the identical

leftmost lower bound u1+1. Together with the equivalence class [l1;u1] that
represents a partition of all atoms from l1 = l2 to +∞.

subcase u1 > u2: Since the second argument itself is a partition (represented
as a sorted list of intervals), the leftmost lower bound of R′

2 is u2 + 1. By

the IH ôverlay ([u2 + 1;u1] :: R
′
1, R

′
2) computes a partition from the identical

leftmost lower bound u2+1. Together with the equivalence class [l2;u2] that
represents a partition of all atoms from l1 = l2 to +∞.

G.2 ̂to equivs and ̂overlay satisfies Properties 1 and 2

Proof. Prop.1: Let [l;u] be given. There are now four subcases:

subcase l = −∞∧ u = +∞: ̂to equivs ([−∞; +∞]) = [−∞; +∞] hence for
all atoms [i; i], [j; j] in this equivalence class [i; i] ⊑ [−∞; +∞] and
[j; j] ⊑ [−∞; +∞].

subcase l = −∞∧ u 6= +∞: ̂to equivs ([−∞;u]) = [−∞;u], [u+1;+∞] hence
two related atoms [i; i], [j; j] will both belong to one of these two equiv-
alence classes. If [i; i] and [j; j] belong to the first equivalence class
[−∞;u], [i; i] ⊑ [−∞;u] and [j; j] ⊑ [−∞;u]. If [i; i] and [j; j] be-
long to the second equivalence class [u + 1;+∞], [i; i] 6⊑ [−∞;u] and
[j; j] 6⊑ [−∞;u].

subcase l 6= −∞∧ u = +∞: ̂to equivs ([l; +∞]) = [−∞; l−1], [l; +∞] hence
two related atoms [i; i], [j; j] will both belong to one of these two equiv-
alence classes. If [i; i] and [j; j] belong to the first equivalence class
[−∞; l−1], [i; i] 6⊑ [l; +∞] and [j; j] 6⊑ [l; +∞]. If [i; i] and [j; j] belong to
the second equivalence class [l; +∞], [i; i] ⊑ [l; +∞] and [j; j] ⊑ [l; +∞].

subcase l 6= −∞∧ u 6= +∞: ̂to equivs ([l;u]) = [−∞; l−1], [l;u]; [u+1;+∞]
hence two related atoms [i; i], [j; j] will both belong to one of these three
equivalence classes. If [i; i] and [j; j] belong to the first equivalence class
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[−∞; l− 1], [i; i] 6⊑ [l;u] and [j; j] 6⊑ [l;u]. If [i; i] and [j; j] belong to the
second equivalence class [l;u], [i; i] ⊑ [l;u] and [j; j] ⊑ [l;u]. If [i; i] and
[j; j] belong to the third equivalence class [u + 1;+∞], [i; i] 6⊑ [l;u] and
[j; j] 6⊑ [l;u].

Prop.2: Let [b], [c], [i; i], [j, j] be given. We argue by induction. In the base case
two atoms [i; i] and [j; j] that are related in the resulting partition both
belong to the single equivalence class [l1; +∞] and are hence also related in
both argument partitions [l1; +∞] and [l2; +∞] by the invariant l1 = l2. In
the inductive step there are three subcases to consider:
subcase u1 = u2: The two related atoms [i; i], [j; j] will both belong to the

equivalence class [l1;u1] or to the partition of the range u1+1 = u2+1 to
+∞ computed by the recursive invocation. In the first case since l1 = l2
and u1 = u2 the atoms are also related by the argument partition. In the
second case it follows from the IH that the atoms are also related by the
argument partitions R′

1 and R′
2 of the range u1+1 = u2+1 to +∞. But

then the atoms are also related by the argument partitions [l1;u1] :: R
′
1

and [l2;u2] :: R
′
2 of the range l1 = l2 to +∞.

subcase u1 < u2: The two related atoms [i; i], [j; j] will both belong to the
equivalence class [l1;u1] or to the partition of the range u1 + 1 to +∞
computed by the recursive invocation. In the first case since l1 = l2
and u1 < u2 the atoms are also related by the argument partition since
[l1;u1] ⊑ [l2;u2]. In the second case it follows from the IH that the atoms
are also related by the argument partition R′

1 and [u1 + 1;u2] :: R
′
2 of

the range u1 + 1 to +∞. But then the atoms are also related by the
argument partitions [l1;u1] :: R

′
1 and [l2;u2] :: R

′
2 of the range l1 = l2 to

+∞.
subcase u1 > u2: The two related atoms [i; i], [j; j] will both belong to the

equivalence class [l2;u2] or to the partition of the range u2 + 1 to +∞
computed by the recursive invocation. In the first case since l1 = l2
and u1 > u2 the atoms are also related by the argument partition since
[l2;u2] ⊑ [l1;u1]. In the second case it follows from the IH that the atoms
are also related by the argument partition [u2 + 1;u1] :: R

′
1 and R′

2 of
the range u2 + 1 to +∞. But then the atoms are also related by the
argument partitions [l1;u1] :: R

′
1 and [l2;u2] :: R

′
2 of the range l1 = l2 to

+∞.
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H The Cartesian product partition

H.1 ̂to equivs computes a partition and ̂overlay preserves partition

If ̂to equivsA and ̂to equivsB computes partitions and ôverlayA and ôverlayB

preserves partitions then (a) ̂to equivsA×B computes a partition and (b) ôverlayA×B

preserves partitions

Proof.

(a) Given an argument (ℓA, ℓB), by assumption ̂to equivsA(ℓA) computes a par-

tition of Atoms(A) and ̂to equivsB(ℓB) computes a partition of Atoms(B).
Each of these thereby also partition Atoms(A)×{⊥} and {⊥}×Atoms(B),
respectively. Hence each atom in (the disjoint union) (Atoms(A) × {⊥}) ∪
({⊥} ×Atoms(B)) belongs to precisely one equivalence class.

(b) Given ([a], [b]) and ([a′], [b′]), ôverlayA([a], [a
′]) and ôverlayB([b], [b

′]) each
compute a partition of Atoms(A)×{⊥} and {⊥}×Atoms(B), respectively. As

a consequence (ôverlayA([a], [a
′]), ôverlayB([b], [b

′])) still partitionsAtoms(A×B)
into disjoint equivalence classes.

H.2 ̂to equivs and ̂overlay satisfies Properties 1 and 2

If ̂to equivsA and ôverlayA and ̂to equivsB and ôverlayB satisfy Properties 1, 2

then ̂to equivsA×B and ôverlayA×B also satisfy Properties 1, 2.

Proof.

Property 1: Let (ℓA, ℓB) ∈ A × B be given, let [ai] ∈ ̂to equivs (ℓA, ℓB) =

( ̂to equivs (ℓA), ̂to equivs (ℓB)), and let a, a′ ∈ [ai] be given. There are now
two cases to consider depending on whether the atoms and the equivalence

class belong to the partition ̂to equivs (ℓA) of Atoms(A) ∪ {⊥} or to the

partition ̂to equivs (ℓB) of {⊥} ∪ Atoms(B).
In the first case a, a′ must be of the shape (a0,⊥) and (a1,⊥). But then
(a0 ⊑ ℓA ∧ a1 ⊑ ℓA) or (a0 6⊑ ℓA ∧ a1 6⊑ ℓA). If the former is the case, then
(a0,⊥) ⊑ (ℓA, ℓB) and (a1,⊥) ⊑ (ℓA, ℓB) under componentwise ordering. If
the latter is the case, then (a0,⊥) 6⊑ (ℓA, ℓB) and (a1,⊥) 6⊑ (ℓA, ℓB) under
componentwise ordering.
In the second case a, a′ must be of the shape (⊥, b0) and (⊥, b1). But then
(b0 ⊑ ℓB ∧ b1 ⊑ ℓB) or (b0 6⊑ ℓB ∧ b1 6⊑ ℓB). If the former is the case, then
(⊥, b0) ⊑ (ℓA, ℓB) and (⊥, b1) ⊑ (ℓA, ℓB) under componentwise ordering. If
the latter is the case, then (⊥, b0) 6⊑ (ℓA, ℓB) and (⊥, b1) 6⊑ (ℓA, ℓB) under
componentwise ordering.

Property 2: Let ([b], [c]) and ([b′], [c′]) be given, let [ai] ∈ ôverlay (([b], [c]), ([b′], [c′])) =

(ôverlayA([b], [b
′]), ôverlayB([c], [c

′]), and let a, a′ ∈ [ai]. Again there are two
cases to consider depending on whether the atoms and the equivalence class
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belong to the partition ôverlayA([b], [b
′]) of Atoms(A) × {⊥} or to the par-

tition ôverlayB([c], [c
′]) of {⊥} ×Atoms(B).

In the first case a, a′ must be of the shape (a0,⊥) and (a1,⊥) but then

a0, a1 ∈ [ai] for [ai] ∈ ôverlayA([b], [b
′]) interpreted as a partition of Atoms(A).

As a consequence there exists j, k such that a0, a1 ∈ [bj ] and a0, a1 ∈ [b′k].
But then (a0,⊥), (a1,⊥) ∈ [bj ] and (a0,⊥), (a1,⊥) ∈ [b′k] again interpret-

ing [b] and [b′] as partitions over Atoms(A) × {⊥} and thereby [bj ], [b
′
k] as

equivalence classes over (Atoms(A)× {⊥}) ∪ ({⊥} ×Atoms(B)).
In the second case a, a′ must be of the shape (⊥, b0) and (⊥, b1) but then

b0, b1 ∈ [ai] for [ai] ∈ ôverlayB([c], [c
′]) interpreted as a partition of Atoms(B).

As a consequence there exists j, k such that a0, a1 ∈ [cj ] and a0, a1 ∈ [c′k].
But then (⊥, b0), (⊥, b1) ∈ [cj ] and (⊥, b0), (⊥, b1) ∈ [c′k] again interpret-

ing [c] and [c′] as partitions over {⊥} × Atoms(B) and thereby [cj ], [c
′
k] as

equivalence classes over (Atoms(A)× {⊥}) ∪ ({⊥} ×Atoms(B)).
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I The reduced/smash product partition

I.1 ̂to equivs computes a partition and ̂overlay preserves partition

If ̂to equivsA and ̂to equivsB computes partitions and ôverlayA and ôverlayB

preserves partitions then (a) ̂to equivsA∗B computes a partition and (b) ôverlayA∗B

preserves partitions

Proof.

(a) Given an argument (ℓA, ℓB), by assumption ̂to equivsA(ℓA) computes a par-

tition of Atoms(A) and ̂to equivsB(ℓB) computes a partition of Atoms(B).
Since any atom (a, b) will belong to exactly one equivalence class from

A: [a] ∈ ̂to equivsA(ℓA) and exactly one equivalence class from B: [b] ∈
̂to equivsB(ℓB), (a, b) will therefore belong to exactly one equivalence class

([a], [b]) in the product ( ̂to equivsA(ℓA), ̂to equivsB(ℓB)).

(b) Given ([a], [b]) and ([a′], [b′]), ôverlayA([a], [a
′]) and ôverlayB([b], [b

′]) each
compute a partition of Atoms(A) and Atoms(B), respectively. As a con-

sequence (ôverlayA([a], [a
′]), ôverlayB([b], [b

′])) still partitions Atoms(A ∗B)
into disjoint equivalence classes.

I.2 ̂to equivs and ̂overlay satisfies Properties 1 and 2

If ̂to equivsA and ôverlayA and ̂to equivsB and ôverlayB satisfy Properties 1, 2

then ̂to equivsA∗B and ôverlayA∗B also satisfy Properties 1, 2.

Proof.

Property 1: Let (ℓA, ℓB) ∈ A×B be given, let ([ai], [bj]) ∈ ̂to equivs (ℓA, ℓB) =

( ̂to equivs (ℓA), ̂to equivs (ℓB)), and let a, a′ ∈ ([ai], [bj ]) be given. Atoms a, a′

must be of the shape (a0, b0) and (a1, b1). But then a0, a1 ∈ [ai] and b0, b1 ∈
[bj ] and therefore (i) a0 ⊑ ℓA∧a1 ⊑ ℓA or (ii) a0 6⊑ ℓA∧a1 6⊑ ℓA and similarly
(iii) b0 ⊑ ℓB ∧ b1 ⊑ ℓB or (iv) b0 6⊑ ℓB ∧ b1 6⊑ ℓB. If (i) and (iii) is the case,
(a0, b0) ⊑ (ℓA, ℓB) and (a1, b1) ⊑ (ℓA, ℓB) under the componentwise ordering.
In all three remaining cases ((i) and (iv), (ii) and (iii), (ii) and (iv)) either
the first or the second components (or both) are not ordered and therefore
(a0, b0) 6⊑ (ℓA, ℓB) and (a1, b1) 6⊑ (ℓA, ℓB) under the componentwise ordering.

Property 2: Let ([b], [c]) and ([b′], [c′]) be given, let ([bi], [ci′ ]) ∈ ôverlay (([b], [c]), ([b′], [c′])) =

(ôverlayA([b], [b
′]), ôverlayB([c], [c

′])), and let a, a′ ∈ ([bi], [ci′ ]). Atoms a, a′

must be of the shape (a0, b0) and (a1, b1). But then a0, a1 ∈ [bi] and b0, b1 ∈
[ci′ ]. As a consequence there exists j, k such that a0, a1 ∈ [bj ] where [bj ] ∈ [b]

and a0, a1 ∈ [b′k] where [b
′
k] ∈ [b′] and there exists j′, k′ such that b0, b1 ∈ [cj′ ]

where [cj′ ] ∈ [c] and b0, b1 ∈ [c′k′ ] where [c′k′ ] ∈ [c′]. But then there exists

equivalence classes ([bj ], [cj′ ]) ∈ ([b], [c]) and ([b′k], [c
′
k′ ]) ∈ ([b′], [c′]) such that

(a0, b0) ∈ ([bj ], [cj′ ]) and (a1, b1) ∈ ([b′k], [c
′
k′ ]).
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J Missing analysis definitions

Â for analyzing arithmetic expressions:

Â : E −→ Ŝtore −→ V̂al

Â(n, ρ̂) = αv(n)

Â(x , ρ̂) = ρ̂(x )

Â(?, ρ̂) = ⊤

Â(e1 + e2, ρ̂) = Â(e1, ρ̂) +̂ Â(e2, ρ̂)

Â(e1 − e2, ρ̂) = Â(e1, ρ̂) −̂ Â(e2, ρ̂)

The filter function t̂rue for analyzing variable comparisons:

t̂rue : B −→ Ŝtore −→ Ŝtore

t̂rue(tt, ρ̂) = ρ̂

t̂rue(ff, ρ̂) = ⊥

t̂rue(x1 < x2, ρ̂) =





x

⊥ if ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l1;u
′
1], x2 7→ [l′2;u2]]

if ρ̂(xi) = [li;ui], i ∈ {1, 2}

where u′
1 = min u1(u2 − 1)

l′2 = max(l1 + 1)l2

The filter function f̂alse for analyzing variable comparisons:

f̂alse : B −→ Ŝtore −→ Ŝtore

f̂alse(tt, ρ̂) = ⊥

f̂alse(ff, ρ̂) = ρ̂

f̂alse(x1 < x2, ρ̂) =





⊥ if ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l′1;u1], x2 7→ [l2;u
′
2]]

if ρ̂(xi) = [li;ui], i ∈ {1, 2}

where l′1 = max l1l2

u′
2 = minu1u2


