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Abstract. We develop a modular approach to statically analyse imperative pro-

cesses communicating by synchronous message passing. The approach is modu-

lar in that it only needs to analyze one process at a time, but will in general have

to do so repeatedly. The approach combines lattice-valued regular expressions to

capture network communication with a dedicated shuffle operator for compos-

ing individual process analysis results. We present both a soundness proof and

a prototype implementation of the approach for a synchronous subset of the Go

programming language. Overall our approach tackles the combinatorial explo-

sion of concurrent programs by suitable static analysis approximations, thereby

lifting traditional sequential analysis techniques to a concurrent setting.

1 Introduction

Concurrent software surrounds us: whether as an app on a mobile phone communi-

cating with a server, in the software business where a system has been structured as a

service-oriented architecture, or at the data center where processes spread on many pro-

cessors to collectively solve a computational query, they are all structured as software

processes communicating by some form of message passing. The past decades contain

a line of work towards ensuring correctness of such software: The model checking com-

munity has developed techniques for validating such distributive designs and the types

community has developed session types for checking the overall communication struc-

ture. Within the static analysis community a line of work has pursued static analysis of

process calculi (which may themselves be viewed as suitable process abstractions).

In this work we develop a static analysis approach that works directly at the source

code level and addresses how safety properties of a distributed program may depend

on intricate details involving both the order and content of the network communica-

tion. Rather than risk a combinatorial explosion by computing a collective state of all

involved processes, our approach captures the network communication between a num-

ber of synchronous, message-passing processes with a dedicated abstract domain. This

approach allows us to analyze each process separately. We then combine the analysis

results of individual processes with a dedicated shuffle operator for the domain. We

prove soundness of the analysis with respect to an operational semantics for a subset of

Go and discuss a prototype implementation of the approach.

Consider the Go program in Fig. 1. It declares two common channels ch1 and ch2,

spawns off two processes (go-routines), and proceeds to the main read-statement at

the bottom. The first process in line 6 attempts to send 1 on channel ch1 and 2 on

channel ch2. The second process in line 7 reads a value (1) from channel ch1 into

variable x and sends the value of x+1 (2) on channel ch2. Finally the read statement
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1 package main

2

3 func main() {

4 ch1 := make(chan int);

5 ch2 := make(chan int);

6 go func() { ch1 <-1; ch2 <-2; }()

7 go func() { var x int;

8 x = <-ch1; ch2 <- x+1; }()

9 var y int;

10 y = <- ch2;

11 }

Fig. 1: An example Go program

in line 10 reads a value from ch2. Under worst-case intra-process analysis assump-

tions this read could receive any value and bind it to y. This is also the result of a first

iteration of our intra-process analysis. From this first intra-process analysis result we

can read off that the three processes perform (the prefix-closure of) the network ac-

tions ch1![1; 1] · ch2![2; 2], ch1?[−∞; +∞] · ch2![−∞; +∞], and ch2?[−∞; +∞]
respectively, here expressed as lattice-valued regular expressions with channel-tagged

intervals. By shuffling the first and third result and performing intra-process reanalysis

of the second process under this stronger assumption, we learn that it actually performs

(the prefix-closure of) the network actions ch1?[1; 1] · ch2![2; 2]. Finally we shuffle

this result with the result from the first process and run a third round of intra-process

reanalysis to learn that the value read from ch2 and assigned to y is constant [2; 2].

2 Language

We consider an imperative core language extended with primitives for synchronous

message passing between individual processes, as illustrated by the above example.

The core language is designed to be a genuine subset of Go (restricted to synchronous

message passing), which we term nano-Go. Because of our restrictions, programs in

nano-Go consist of a fixed number of top-level processes communicating through a

fixed number of channels:

func main() {

ch1 := make(chan int) ... chk := make(chan int)

go func() { s1 }()

...

go func() { sn−1 }()

sn

}

As such, the programs spawn off n processes and can thereby conveniently be described

by their process bodies s1, . . . , sn from an abstract syntax point of view. We provide a

BNF grammar of the process language in Fig. 2. Each process is defined by a composite

statement (ending in a blocking select { } statement) and has access to a process-local

environment of pre-declared variables.

The statements of the language are mostly self-explanatory. select { a1 . . . an }
non-deterministically chooses between a list of read and write cases a1, . . . , an. The
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e ::= n | x | e+ e | e- e | . . .

b ::= tt | ff | x < x | . . .

s ::= skip
ℓ | x =ℓ e | s; s | if bℓ { s } else { s } | for bℓ { s } | select

ℓ { a . . . a }

a ::= case x = <-
ℓ ch: s | case ch <-

ℓ e: s

p ::= (s; selectℓ { }) : · · · : (s; selectℓ { })

Fig. 2: BNF grammar of nano-Go

case case x = <- ch: s reads a value from channel ch, stores it in the variable x, and

proceeds to execute s. The case case ch <- e: s writes the value of the expression e to

channel ch and proceeds to execute s. Reading and writing messages is synchronous: a

writing process blocks without an available receiver. Similarly a reading process cannot

proceed until a writing process is ready to supply an input.

We assume that all statements and cases have been uniquely labeled. To be able

to refer to specific labels occurring in a given statement or case we define the three

functions first , last , and labels in Fig. 3. Each of these accept a labeled statement or

case as input, first returns a label, whereas last and labels return a set of labels. For

example, for the statement s = if ttℓ0 { x =ℓ1 1 } else { skipℓ2 } we get first(s) =
ℓ0 while last(s) = {ℓ1, ℓ2} and labels(s) = {ℓ0, ℓ1, ℓ2}. Technically skipℓ is not a

valid statement in concrete Go syntax, but we include it nevertheless as it is convenient

(as the identity) in translating valid Go statement sequences into abstract syntax trees

(ASTs) with only binary statement composition.

We provide an operational semantics of nano-Go in Fig. 4. In the semantics a sys-

tem configuration consists of an ordered sequence of process configurations c1 . . . cn.

This setup can capture execution from the point just after all go-routines have been

started. Each process configuration is a pair ci = 〈si, ρi〉 where the store ρi captures

the values of the ith process’s variables and si is either a statement or a case (also

denoted ai) that captures the program point of the ith process. As traditional we ex-

press message-passing communication with annotation labels, writing ch!v and ch?v
for a message write and a message read, respectively. Synchronization is expressed in

rule SYSCOMM by pairing a read with a write, whereas the rule SYSTAU expresses a

s / a first last labels

skip
ℓ ℓ {ℓ} {ℓ}

x =ℓ e ℓ {ℓ} {ℓ}
s1 ; s2 first(s1) last(s2) labels(s1) ∪ labels(s2)

if bℓ { s1 } else { s2 } ℓ last(s1) ∪ last(s2) {ℓ} ∪ labels(s1) ∪ labels(s2)

for bℓ { s } ℓ {ℓ} {ℓ} ∪ labels(s)

select
ℓ { a1 . . . an } ℓ last(a1) ∪ · · · ∪ last(an) {ℓ} ∪ labels(a1) ∪ · · · ∪ labels(an)

case x = <-ℓ ch: s ℓ last(s) {ℓ} ∪ labels(s)

case ch <-ℓ e: s ℓ last(s) {ℓ} ∪ labels(s)

Fig. 3: Definitions of first , last , and labels
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ρ ⊢A n ⇓ n
LIT

ρ ⊢A x ⇓ ρ(x )
VAR

ρ ⊢A e1 ⇓ v1 ρ ⊢A e2 ⇓ v2

ρ ⊢A e1 + e2 ⇓ v1 + v2
ADD

ρ ⊢A e1 ⇓ v1 ρ ⊢A e2 ⇓ v2

ρ ⊢A e1 - e2 ⇓ v1 − v2
SUB

ρ ⊢B tt ⇓ tt
TRUE

ρ ⊢B ff ⇓ ff
FALSE

ρ(x1) < ρ(x2)

ρ ⊢B x1 < x2 ⇓ tt
LESSTHAN1

ρ(x1) ≥ ρ(x2)

ρ ⊢B x1 < x2 ⇓ ff
LESSTHAN2

〈skipℓ, ρ〉
τ

−→ ρ
SKIP

ρ ⊢A e ⇓ v

〈x =
ℓ e, ρ〉

τ
−→ ρ[x 7→ v]

ASSIGN

〈s1, ρ〉
α

−→ 〈s3, ρ
′〉

〈s1 ; s2, ρ〉
α

−→ 〈s3 ; s2, ρ
′〉

SEQ1
〈s1, ρ〉

α
−→ ρ′

〈s1 ; s2, ρ〉
α

−→ 〈s2, ρ
′〉

SEQ2

ρ ⊢B b ⇓ tt

〈if bℓ { s1 } else { s2 }, ρ〉
τ

−→ 〈s1, ρ〉
IF1

ρ ⊢B b ⇓ ff

〈if bℓ { s1 } else { s2 }, ρ〉
τ

−→ 〈s2, ρ〉
IF2

ρ ⊢B b ⇓ tt

〈for bℓ { s1 }, ρ〉
τ

−→ 〈s1 ; for bℓ { s1 }, ρ〉
FOR1

ρ ⊢B b ⇓ ff

〈for bℓ { s1 }, ρ〉
τ

−→ ρ
FOR2

〈ai, ρ〉
α

−→ 〈si, ρ
′〉

〈selectℓ { a1 . . . an }, ρ〉
α

−→ 〈si, ρ
′〉

SELECT

〈case x = <-
ℓ ch: s, ρ〉

ch?v
−→ 〈s, ρ[x 7→ v]〉

READ

ρ ⊢A e ⇓ v

〈case ch <-
ℓ e: s, ρ〉

ch!v
−→ 〈s, ρ〉

WRITE

ci
τ

−→ c′i

c1 . . . ci . . . cn
i,τ
=⇒ c1 . . . c

′
i . . . cn

SYSTAU

ci
ch!v
−→ c′i cj

ch?v
−→ c′j i 6= j

c1 . . . ci . . . cj . . . cn
i,ch,v,j
=⇒ c1 . . . c

′
i . . . c

′
j . . . cn

SYSCOMM

Fig. 4: Operational semantics of nano-Go
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non-communicating action. We label the system-level transitions with the indices of the

involved processes, writing i, τ for the ith process performing a non-communicating

action and i, ch, v, j for process i writing a value v on channel ch which is read by pro-

cess j. Following the (informal) semantics of Go, a process cannot send a message on

a channel to itself. We model this restriction by testing the sender’s index i against the

receiver’s index j. Because two senders can write to the same channel, in a given trace

the semantics non-deterministically puts the message of one sender before another.

Nano-Go embodies two simplifying assumptions: there is no dynamic channel or

process creation and message passing is synchronous. We are well aware of the limita-

tions induced by these assumptions but find them orthogonal to the topic of this paper:

process-local static analysis. As such we plan to address them in future work.

3 Background

We assume the reader is familiar with lattice theory [Grätzer, 1978, Davey and Priestley,

2002] and abstract interpretation [Cousot and Cousot, 1977, 1979], and only recall the

more specialized and recent material on the abstract domain of lattice-valued regular

expressions [Midtgaard et al., 2016b].

3.1 Lattice theory and abstract interpretation

An atom a ∈ L is a lattice element such that if ⊥ ⊑ s ⊑ a for some other s ∈ L
then s = ⊥ or s = a. We write Atoms(L) for L’s set of atoms and let a, a′ range over

this set. An atomic lattice requires that for all non-bottom elements s ∈ L there exists

a ∈ Atoms(L) such that a ⊑ s. An atomistic lattice requires that each non-bottom

element s ∈ L is expressible as a join of atoms s = ⊔ S for some S ⊆ Atoms(L).

An atomistic Galois insertion 〈C;⊑〉 −−→−→←−−−
α

γ
〈A;≤〉 requires that α, γ connect two

atomistic lattices such that α : Atoms(C) −→ Atoms(A) is surjective (α maps atoms

to atoms and for all a ∈ Atoms(A) there exists an c ∈ Atoms(C) such that α(c) = a).

3.2 Lattice-valued regular expressions

To analyze the network communication and content we will use the domain of lattice-

valued regular expressions (LVREs) [Logozzo, 2004, Midtgaard et al., 2016b]. We re-

call here the basics of LVREs (sans complement as it is irrelevant for the problem at

hand). Syntactically LVREs are regular expressions with its characters drawn from a

lattice 〈A;⊑〉:

R̂A ::= ∅ | ǫ | ℓ | R̂∗
A | R̂A · R̂A | R̂A + R̂A | R̂A & R̂A where ℓ ∈ A \ {⊥}

We assume that the meaning of the lattice literals (A’s elements) are given by

a Galois insertion 〈℘(C);⊆〉 −−→−→←−−−
α

γ
〈A;⊑〉 and that α maps atoms to atoms: α :

Atoms(℘(C)) −→ Atoms(A). These assumptions are liberal enough to allow many

standard domains from the Galois connection framework (signs, parity, constant propa-

gation, intervals, etc.). A number of consequences follow from these basic assumptions:



6 Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson

L(∅) = ∅

L(ǫ) = {ǫ}

L(ℓ) = {c | c ∈ γ(ℓ)}

L(r∗) = ∪i≥0 L(r)i

L(r1 · r2) = L(r1) · L(r2)

L(r1 + r2) = L(r1) ∪ L(r2)

L(r1 & r2) = L(r1) ∩ L(r2)

Fig. 5: The denotation of lattice-valued regular expressions

D̂a(∅) = ∅

D̂a(ǫ) = ∅

D̂a(ℓ) =

{
ǫ a ⊑ ℓ

∅ a 6⊑ ℓ

D̂a(r
∗) = D̂a(r) · r

∗

D̂a(r1 · r2) =

{
D̂a(r1) · r2 + D̂a(r2) ǫ ⊏∼ r1

D̂a(r1) · r2 ǫ 6⊏∼ r1

D̂a(r1 + r2) = D̂a(r1) + D̂a(r2)

D̂a(r1 & r2) = D̂a(r1)& D̂a(r2)

Fig. 6: The Brzozowski derivative of lattice-valued regular expressions

A is a complete lattice, A is atomic, and A is atomistic. They also have the consequence

that γ is strict (γ(⊥) = ∅), that α : Atoms(℘(C)) −→ Atoms(A) is surjective (we

have an atomistic Galois insertion), and that A’s atoms have no overlapping meaning

(∀a, a′. a 6= a′ =⇒ γ(a) ∩ γ(a′) = ∅) [Midtgaard et al., 2016b].

We give meaning to the LVREs relative to the γ of the given Galois insertion. The

denotation is given in Fig. 5. Based on this denotation two LVREs r, r′ are ordered

language-wise: r ⊏∼ r′ ⇐⇒ L(r) ⊆ L(r′). This ordering constitutes only a pre-order

as it fails anti-symmetry. To regain a partial order we consider LVREs up to language

equivalence R̂A/≈. The resulting quotient domain constitutes a lattice with binary least

upper bounds + and greatest lower bounds &. It follows from the definition of L that,

e.g., concatenation · is monotone in both arguments.

LVREs provide a number of domain operations: nullable : R̂A −→ B determines

whether the empty string is accepted by the language of a LVRE r (nullable(r) ⇐⇒
ǫ ∈ L(r)). We omit the straight-forward, structural definition here for brevity. The

Brzozowski derivative [Brzozowski, 1964] D̂ : Atoms(A) × R̂A −→ R̂a defined in

Fig. 6 represents the language of a LVRE r remaining after having matched some a ∈
Atoms(A) as the first character. One can prove that L(D̂a(r)) = {w | ∀c ∈ γ(a). cw ∈

L(r)} for all a ∈ Atoms(A) and r ∈ R̂A. The definition of Brzozowski derivatives

over LVREs extends structurally to strings: D̂ǫ(r) = r and D̂aw(r) = D̂w(D̂a(r)).
Following Brzozowski [1964] derivatives can be used for translating LVREs to lattice-

valued automata. One can thus view LVREs as automata states and the derivatives

as transitions. A LVRE r is considered an accept state iff nullable(r). This view is

underlined by the fact that there are only a finite number of syntactically different LVRE

derivatives (corresponding to individual states) up to associativity, commutativity, and

idempotency (ACI) of + when Atoms(A) is finite.

In practice many derivatives are syntactically identical, e.g., over LVREs with in-

tervals D̂[0;0]([0; 100] · [1; 2]
∗) = . . . = D̂[100;100]([0; 100] · [1; 2]

∗) = ǫ · [1; 2]∗ which

motivated to group atoms with identical derivatives together in equivalence classes. For

this purpose r̂ange(r) : R̂A −→ êquivA computes a partition of Atoms(A) such that
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two atoms a, a′ are placed in the same equivalence class a, a′ ∈ [a′′] ∈ r̂ange(r) if

D̂a(r) = D̂a′(r). Similarly ôverlay : êquivA × êquivA −→ êquivA refines two parti-

tions into a new partition coarser than both. ôverlay is thus monotone over the lattice

of partitions ordered under refinement [Grätzer, 1978]. Finally we require an opera-

tion r̂epr : (℘(Atoms(A)) \ {∅}) −→ Atoms(A) that returns a representative atom

a ∈ r̂epr([a′]) of a given equivalence class [a′] in a partition, and a second operation

p̂roject : (℘(Atoms(A)) \ {∅}) −→ A that returns a lattice element greater than all

atoms in a given equivalence class: ∀a ∈ [a′]. a ⊑ p̂roject([a′]).

4 Shuffling lattice-valued regular expressions

To support analysis of arbitrary combinations of processes we extend LVREs with a

symbolic shuffle operator. Formally we extend the grammar of LVREs with an addi-

tional production: R̂A ::= . . . | R̂A ‖ R̂A

Next we consider how to extend the various auxiliary operations to support the shuffle

operator. First we define single string shuffling over the concrete domain C as follows:

ǫ ‖ w = {w} w ‖ ǫ = {w}

c1w1 ‖ c2w2 = {c1w | w ∈ w1 ‖ c2w2} ∪ {c2w | w ∈ c1w1 ‖ w2}

This definition is taken from Sulzmann and Thiemann [2015]. For example, for C =
{a, b, c} we have ab ‖ bc = {abbc, abcb, babc, bacb, bcab}. The single string operation

is commutative: for any strings w,w′ we have w ‖ w′ = w′ ‖ w. We can lift the

single string shuffling definition (elementwise) to languages (also from Sulzmann and

Thiemann [2015]): L1 ‖ L2 = {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L1 ∧ w2 ∈ L2}
Before we continue we establish a number of properties. Interestingly, the language

shuffling operation is not idempotent. For example: {a} ‖ {a} = {aa} 6= {a}. We

believe the following four properties are well known [Sulzmann and Thiemann, 2015]

but nevertheless include them for completeness.

Lemma 1 (Shuffling of prefixed languages).

c1 · L1 ‖ c2 · L2 = c1 · (L1 ‖ c2 · L2) ∪ c2 · (c1 · L1 ‖ L2)

Lemma 2 (Shuffling is commutative, distributive, associative).

L1 ‖ L2 = L2 ‖ L1 (commutative)

L ‖ (L1 ∪ L2) = (L ‖ L1) ∪ (L ‖ L2) (distributive)

L1 ‖ (L2 ‖ L3) = (L1 ‖ L2) ‖ L3 (associative)

We can prove a general shuffle property, that says that the shuffle of two arbitrary

strings accounts for all possible splits of them: both the recursive shuffling of their first

halves and their second halves are taken into consideration.

Lemma 3 (Generalized shuffle property).

∀w1, w2, w3, w4 ∈ C∗. (w1 ‖ w2) · (w3 ‖ w4) ⊆ (w1 · w3) ‖ (w2 · w4)
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For example, by choosing w3 = ǫ and w4 = c we obtain ∀c ∈ C,w1, w2 ∈ C∗. (w1 ‖
w2) · c ⊆ w1 ‖ (w2 · c) which says that choosing c last is one possibility. Similarly in

an alphabet with {rd ,wr} ⊆ C by choosing w3 = rd and w4 = wr as a corollary we

obtain ∀c ∈ C,w1, w2 ∈ C∗. (w1 ‖ w2) · {rd · wr ,wr · rd} ⊆ (w1 · rd) ‖ (w2 · wr).

Shuffling LVREs We can now give meaning to symbolic shuffling of LVREs as language

shuffling of their meanings: L(r1 ‖ r2) = L(r1) ‖ L(r2). Consequently the symbolic

operation is commutative and associative under language equality: r1 ‖ r2 ≈ r2 ‖ r1
and r1 ‖ (r2 ‖ r3) ≈ (r1 ‖ r2) ‖ r3. It is also monotone by definition: r1 ⊏∼ r′1 =⇒
r1 ‖ r2 ⊏∼ r′1 ‖ r2 (and similarly in the second argument by commutativity).

Derivatives and the nullable predicate Under the view of expressions-as-states and

derivatives-as-transitions, the combined, synchronized automaton can take an a-step if

either the first automaton can take an a-step or the second automaton can take an a-step.

This leads to the following definition: D̂a(r1 ‖ r2) = D̂a(r1) ‖ r2 + r1 ‖ D̂a(r2).
Similarly the combined, shuffling automaton is in an acceptance state if both automata

are in acceptance states. This leads to the following definition: nullable(r1 ‖ r2) =
nullable(r1) ∧ nullable(r2).
Our previous work established the Brzozowski equation for LVREs. We extend this

result by showing how it also holds for LVREs with shuffle expressions:

Theorem 4 (Brzozowski’s equation).

r ≈
∑

a∈Atoms(A)

a D̂a(r) + δ(r) where δ(r) =

{
ǫ ǫ ⊏∼ r

∅ ǫ 6⊏∼ r

Based on this we can now extend the following lemmas to hold for LVREs with shuffle.

Lemma 5 (Meaning of derivatives). L(D̂a(r)) = {w | ∀c ∈ γ(a). c · w ∈ L(r)}

Lemma 6 (D̂ monotone in second argument). r ⊏∼ r′ =⇒ D̂a(r) ⊏∼ D̂a(r
′)

Lemma 7 (Correctness of nullable). nullable(r1 ‖ r2) ⇐⇒ ǫ ∈ L(r1 ‖ r2)

Finitely many derivatives We argue that for all r, there exists at most dr different

derivatives up to ACI of +. We first prove a syntactic characterization of all derivatives

as a sum of derived shuffle pairs. There are only as many different derivatives (up to

ACI of +) as there are different sets of such pairs. For each of the dr1 different first

components in such pairs there are at most dr2 different second components and hence

at most dr1 ∗ dr2 different pairs. This gives an upper bound of 2dr1
∗dr2 different sets of

pairs. To reduce the number of derivatives further, we can utilize that ‖ is commutative,

meaning there are only as many unique derivative pairs as there are unique first and

second components. This reduction is however not required to upper-bound the number

of different derivatives.

The r̂ange operator We extend the r̂ange operator to shuffled expressions:

r̂ange(r1 ‖ r2) = ôverlay (r̂ange(r1), r̂ange(r2))

and we subsequently verify that this definition satisfies our formal requirements:

Lemma 8 (r̂ange partitions atoms). ∀r1, r2, [ai] ∈ r̂ange(r1 ‖ r2), a, a
′∈Atoms(A).

a, a′ ∈ [ai] =⇒ D̂a(r1 ‖ r2) = D̂a′(r1 ‖ r2)
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ch!v̂ ∈Ŵrite(V̂al) =Interval × {!}×V̂al

ch?v̂ ∈ R̂ead(V̂al) =Interval × {?}×V̂al

Ĉh(V̂al) =Ŵrite(V̂al)×R̂ead(V̂al)

ρ̂∈ Ŝtore =(Var −→ V̂al)⊥

ĥ, f̂ ∈ R̂
Ĉh(V̂al)

Ê , X̂ ∈ Ĉache =Labels −→ Ŝtore×R̂
Ĉh(V̂al)

Fig. 7: Analysis domains

5 Analysis

Our core analysis is a standard imperative analysis over abstract stores ρ̂ ∈ Ŝtore,

e.g., with intervals. It requires auxiliary, monotone functions âssign , Â, t̂rue, and f̂alse

which are standard and omitted for space reasons. We assume they satisfy the following:

Lemma 9 (Soundness of Â, âssign , t̂rue, f̂alse [Midtgaard et al., 2016a]).

∀e ∈ E, ρ̂ ∈ Ŝtore. αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e ⇓ v}) ⊑ Â(e, ρ̂)

∀ρ̂, x , v̂. αst({ρ[x 7→ v] | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂)}) ⊑̇ âssign(ρ̂, x , v̂)

∀b, ρ̂. αst({ρ ∈ γst(ρ̂) | ρ ⊢B b ⇓ tt}) ⊑̇ t̂rue(b, ρ̂)

∀b, ρ̂. αst({ρ ∈ γst(ρ̂) | ρ ⊢B b ⇓ ff}) ⊑̇ f̂alse(b, ρ̂)

where ⊑̇ is the pointwise lifting of the value ordering ⊑ and where the definitions of

αv, γv and αst , γst are postponed to Sec. 6.

Rather than try to track the state of each individual process simultaneously which

would lead to a combinatorial explosion, each process is approximated by its network

interaction and analyzed in isolation against a given environment of network commu-

nication behaviour. We thus let LVREs of futures track writes and reads over a given

channel when analyzing an individual process and set up a product Ĉh(V̂al) of a write

domain (Ŵrite(V̂al) in Fig. 7 captures approximate write characters) and a read do-

main (R̂ead(V̂al) in Fig. 7 captures approximate read characters).3 We use an interval

in both to capture channel numbers. The analysis future f̂ ∈ R̂
Ĉh(V̂al)

represents the

network communication the surrounding environment may offer. Finally the analysis

specification is expressed as two global analysis caches Ê , X̂ where Ê (ℓ) = (ρ̂, f̂)

capture the store and future upon entry to the statement labeled ℓ and X̂ (ℓ) capture

a corresponding pair upon completion of the statement. The caches are naturally parti-

tioned into process-individual parts Ê1, . . . , Ên with dom(Ê i) = labels(si) such that Ê i

accounts for the labels in process i’s body si (and similarly for X̂ i). Collectively these

are non-overlapping and span Labels for an entire program. Notationally we write Ê iρ(ℓ)

and Ê if (ℓ) to refer to the two components of Ê i(ℓ) (and similarly for X̂ i).

5.1 Analysis algorithm

The analysis is structured in two parts: an intra-process part (in Fig. 8 and Fig. 9) for

analyzing each individual process in isolation and an inter-process part (in Fig. 10) for

analyzing a system of processes with the latter depending on the former.

3 The product with singleton sets {!} and {?} is just presentational: one component denotes

writes and another component denotes reads.
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The intra-process analysis specification in Fig. 8 is standard [Nielson et al., 1999]

modulo the cases for network interaction. Here a read action involves a suitable deriva-

tive of the future wrt. a write action (and vice versa). The specification is slightly com-

plicated by our partitioning of atoms into equivalence classes with identical derivatives.

Algorithmically we use this intra-process analysis to infer process-local caches Ê i and

X̂ i for a given initial future f̂ and statement si.

Given an acceptable analysis result Ê i and X̂ i of a process si we subsequently use

H(Ê i, X̂ i, si) in Fig. 9 to read off the collective network communication history of this

process’s writes and reads. H returns a pair of two languages: The first component de-

notes the prefix p of network communication strings that may arise from a statement si,
whereas the second component denotes the complete language c of network communi-

cation strings that may arise from an end-to-end execution of statement si. Collectively

p + c represents all prefixes of si’s network communication. For a less structured lan-

guage we expect Tarjan’s algorithm [Tarjan, 1981] could be adapted.

We can now combine intra-process communication histories 〈pi, ci〉=H(Ê i, X̂ i, si)
via the shuffle operator to obtain a better approximation of futures and repeat the intra-

process analysis from this new starting point. For example, for an analysis of three pro-

cesses s1, s2, s3 we reanalyze s1 under the future Ê1f (first(s1)) & (p2+c2) ‖ (p3+c3).
To soundly model how a third party process may interfere or communicate with ei-

ther party before or after a message synchronization the inter-process analysis spec-

ification in Fig. 10 imposes a closure requirement. In this setup a future write fol-

lowed by a matching read (and vice versa) may match up and thereby cancel each

other out. We express this requirement with derivatives: a write requires a deriva-

tive with respect to a suitable read (and vice versa). Since r̂ange groups into equiv-

alence classes atoms with identical derivatives, a little extra care is needed to find

equivalence classes for which two consecutive derivatives are guaranteed to yield the

same. This is the purpose of the bottom requirement in Fig. 10, which utilizes that

the atoms of Ĉh(V̂al) can be partitioned with a pair (the first projection π1 parti-

tions the atoms Atoms(Ŵrite(V̂al)) × {⊥} and the second projection π2 the atoms

{⊥} × Atoms(R̂ead(V̂al))).

6 Soundness

The soundness proof is complicated by the fact that we relate two concepts of inherently

different shape: we approximate a property expressible as a set of (prefix) traces, albeit

where a single computation step in the trace itself may require a deriviation tree in the

structural operational semantics of the corresponding process, whereas we specify the

static analysis as a syntax-directed acceptability relation over the program text of each

participating process. We proceed by first proving local statement-level soundness and

then use this to prove system-level soundness. As these assume some over-approximate

futures, we finally prove how an acceptable analysis result may be combined into a

better over-approximation.

The analysis is parametric in the value abstraction, assuming it is given as an atom-

istic Galois insertion ℘(Val) −−−→−→←−−−−
αv

γv

V̂al . The value abstraction is straightforwardly
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Êi, X̂ i � skip
ℓ

iff Êi(ℓ) ⊑ X̂ i(ℓ)

Êi, X̂ i � x =
ℓ e iff (âssign(ρ̂, x , Â(e, ρ̂)), f̂) ⊑ X̂ i(ℓ) where (ρ̂, f̂) = Êi(ℓ)

Êi, X̂ i � s1 ; s2 iff Êi, X̂ i � s1 ∧ Êi, X̂ i � s2 ∧ ∀ℓ1 ∈ last(s1). X̂ i(ℓ1) ⊑ Êi(first(s2))

Êi, X̂ i � if bℓ { s1 } else { s2 } iff Êi, X̂ i � s1 ∧ Êi, X̂ i � s2 ∧

(t̂rue(b, ρ̂), f̂) ⊑ Êi(first(s1)) ∧ (f̂alse(b, ρ̂), f̂) ⊑ Êi(first(s2)) ∧

∀ℓ1 ∈ last(s1), X̂ i(ℓ1) ⊑ X̂ i(ℓ) ∧ ∀ℓ2 ∈ last(s2). X̂ i(ℓ2) ⊑ X̂ i(ℓ)

where (ρ̂, f̂) = Êi(ℓ)

Êi, X̂ i � for bℓ { s1 } iff Êi, X̂ i � s1 ∧

(t̂rue(b, ρ̂), f̂) ⊑ Êi(first(s1)) ∧ (f̂alse(b, ρ̂), f̂) ⊑ X̂ i(ℓ) ∧

∀ℓ1 ∈ last(s1). X̂ i(ℓ1) ⊑ Êi(ℓ) where (ρ̂, f̂) = Êi(ℓ)

Êi, X̂ i � select
ℓ { a1 . . . an } iff Êi, X̂ i � a1 ∧ . . . ∧ Êi, X̂ i � an ∧

Êi(ℓ) ⊑ Êi(first(a1)) ∧ . . . ∧ Êi(ℓ) ⊑ Êi(first(an)) ∧

∀ℓ1 ∈ last(a1). X̂ i(ℓ1) ⊑ X̂ i(ℓ) ∧ . . . ∧ ∀ℓn ∈ last(an). X̂ i(ℓn) ⊑ X̂ i(ℓ)

Êi, X̂ i � case x = <-
ℓ ch: s iff Êi, X̂ i � s ∧

∀[ch!v̂a] ∈ r̂ange(f̂).

(ch!v̂ = p̂roject([ch!v̂a]) ∧ D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅

=⇒ (âssign(ρ̂, x , v̂), D̂r̂epr([ch!v̂a])(f̂)) ⊑ X̂ i(ℓ) ⊑ Êi(first(s)))

where (ρ̂, f̂) = Êi(ℓ)

Êi, X̂ i � case ch <-
ℓ e: s iff Êi, X̂ i � s ∧

∀[ch?v̂a] ∈ r̂ange(f̂).

(ch?v̂ = p̂roject([ch?v̂a]) ∧ v̂ ⊓ v̂′ 6= ⊥ ∧ D̂r̂epr([ch?v̂a])(f̂) 6⊏∼ ∅

=⇒ (ρ̂, D̂r̂epr([ch?v̂a])(f̂)) ⊑ X̂ i(ℓ) ⊑ Êi(first(s))

where (ρ̂, f̂) = Êi(ℓ) ∧ v̂′ = Â(e, ρ̂)

Fig. 8: Intra-process analysis specification

lifted to a Galois insertion over stores: ℘(Var →֒ Val) −−−→−→←−−−−
αst

γst

Ŝtore. Finally the chan-

nel abstraction ℘(Action) −−−−→−→←−−−−−
αch

γch

Ĉh(V̂al) is a standard Cartesian abstraction with

Action = WrAction ∪ RdAction , αch(S) = (αwr ({ch!v ∈ S}), αrd ({ch?v ∈ S}))

and γch(v̂w, v̂r) = γwr (v̂w) ∪ γrd(v̂r). We sometimes abbreviate αch(S) as Ŝ. The

channel abstraction itself utilizes two atomistic Galois insertions ℘(WrAction) −−−−→−→←−−−−−
αwr

γwr

Ŵrite(V̂al) with αwr (S) =
⊔

ch!v∈S(αInt ({ch}), αv({v})) and γwr ([l;u], v̂) =⋃
ch∈γInt ([l;u])

v∈γv(v̂)

{ch!v} and similarly for αrd , γrd [Midtgaard et al., 2016a].

6.1 Statement-level soundness

The following two lemmas express soundness at the statement level for both SOS steps

leading to a terminal and a non-terminal configuration. Properties related to how fu-
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H(Êi, X̂ i, skipℓ) = 〈ǫ, ǫ〉

H(Êi, X̂ i, x =
ℓ e) = 〈ǫ, ǫ〉

H(Êi, X̂ i, s1 ; s2) = 〈p1 + (c1 · p2), c1 · c2〉

where 〈p1, c1〉 = H(Êi, X̂ i, s1) and 〈p1, c2〉 = H(Êi, X̂ i, s2)

H(Êi, X̂ i, if bℓ { s1 } else { s2 }) = 〈p1 + p2, c1 + c2〉

where 〈p1, c1〉 = H(Êi, X̂ i, s1) and 〈p1, c2〉 = H(Êi, X̂ i, s2)

H(Êi, X̂ i, for bℓ { s }) = 〈c∗ · p, c∗〉 where 〈p, c〉 = H(Êi, X̂ i, s)

H(Êi, X̂ i, selectℓ { a1 . . . an }) = 〈ǫ+
∑

i

pi,
∑

i

ci〉

where 〈pi, ci〉 = H(Êi, X̂ i, ai) and 1 ≤ i ≤ n

H(Êi, X̂ i, case x = <-
ℓ ch: s) = 〈ǫ+ ch?v̂ + ch?v̂ · p, ch?v̂ · c〉

where v̂ = Êi
ρ(first(s))(x ) and 〈p, c〉 = H(Êi, X̂ i, s)

H(Êi, X̂ i, case ch <-
ℓ e: s) = 〈ǫ+ ch!v̂ + ch!v̂ · p, ch!v̂ · c〉

where v̂ = Â(e, Êi
ρ(ℓ)) and 〈p, c〉 = H(Êi, X̂ i, s)

Fig. 9: Reading off a collective trace history

Ê , X̂ � s1 : · · · : sn iff ∀i. Êi, X̂ i � si ∧

∀i, ℓ, [ch!v̂] ∈ ̂overlay ( {π1(r̂ange(Êi
f (ℓ)))} ∪

⋃

[ch′!v̂′]∈r̂ange(̂Ei
f
(ℓ))

π2(r̂ange(D̂r̂epr([ch′!v̂′])(Êi
f (ℓ)))) ).

D̂r̂epr([ch!v̂])r̂epr([ch?v̂])(Êi
f (ℓ)) ⊏∼ Êi

f (ℓ) ∧

∀i, ℓ, [ch?v̂] ∈ ̂overlay ( {π2(r̂ange(Êi
f (ℓ)))} ∪

⋃

[ch′?v̂′]∈r̂ange(̂Ei
f
(ℓ))

π1(r̂ange(D̂r̂epr([ch′?v̂′])(Êi
f (ℓ)))) ).

D̂r̂epr([ch?v̂])r̂epr([ch!v̂])(Êi
f (ℓ)) ⊏∼ Êi

f (ℓ)

Fig. 10: Inter-process analysis specification

tures propagate across processes are handled at the system level. The two lemmas are

reminiscent of lemmas 7.9, 7.10 in our previous work [Midtgaard et al., 2016a] with the

key difference that those were expressed in terms of an instrumented semantics. Both of

these lemmas express soundness of a network action α against the environment using a

derivative of the converse action α defined as τ = ǫ ch?v = ch!v ch!v = ch?v.

Lemma 10 (One step statement soundness, terminal). If 〈s, ρ〉
α
−→ ρ′, Ê i, X̂ i � s,

and ρ ∈ γst(Ê iρ(first(s))) then ∀ℓ ∈ last(s). ρ′ ∈ γst(X̂ i
ρ(ℓ)) ∧ D̂α̂

(Ê if (first(s))) ⊏∼

X̂ i
f (ℓ)

Lemma 11 (One step statement soundness, non-terminal). If 〈s, ρ〉
α
−→ 〈s′, ρ′〉,

Ê i, X̂ i � s, ρ ∈ γst(Ê iρ(first(s))), and D̂
α̂
(Ê if (first(s))) 6⊏∼ ∅ then Ê i, X̂ i � s′ ∧ ρ′ ∈

γst(Ê iρ(first(s
′))) ∧ D̂

α̂
(Ê if (first(s))) ⊏∼ Ê

i
f (first(s

′))
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6.2 System-level soundness

To express system-level soundness we introduce two homomorphisms over the labels
of the semantics’s system-level transitions:

ℏk(i, τ) = ǫ

ℏk(i, ch, v, j) =





ch!v k = i

ch?v k = j

ǫ k /∈ {i, j}

∫−k(i, τ) = ǫ

∫−k(i, ch, v, j) =





ch?v k = i

ch!v k = j

ch!v · ch?v k /∈ {i, j}, i < j

ch?v · ch!v k /∈ {i, j}, i > j

Note how in two cases ∫−k maps a single communication to a string of two characters:

write-read or read-write, depending on the index of the participant (we have chosen

somewhat arbitrarily to let the lowest process index go first).

Theorem 12 (Analysis soundness). For all programs s1 : · · · : sn, initial stores

ρinit , acceptable analysis answers Ê , X̂ such that Ê , X̂ � s1 : · · · : sn and the ini-

tial store is soundly account for ∀i. ρinit ∈ γst(Ê iρ(first(si))), and arbitrary traces

〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n with futures soundly accounted for

∀i. ∫−i(α1 . . . αk) ∈ L(Ê if (first(si))) then for any i such that 1 ≤ i ≤ n and c′i =

〈s′i, ρ
′
i〉 we have ρ′i ∈ γst(Ê iρ(first(s

′
i))) ∧ D̂ ̂∫−i(α1...αk)

(Ê if (first(si))) ⊏∼ Ê
i
f (first(s

′
i))

Intuitively, the analysis accounts for all execution traces in the program such that the

abstract store associated to each entry accounts for the reachable concrete stores and

the abstract future associated to each entry accounts for the network communication

of the surrounding process environment. We prove the generalization that concludes

Ê i, X̂ i � s′i in addition to the above.

6.3 Soundness of iterative approach

The above proves soundness of the process analysis assuming that all futures are soundly

accounted for in the initial statements of the individual processes, e.g., from worst-case

assumptions ∀i. Ê if (first(si)) = ⊤
∗. To do better, we first express futures as a suitable

shuffling of histories:

Lemma 13 (Futures as histories, sans sum). For all programs s1 : · · · : sn, initial

stores ρinit , and traces 〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n such that for all

1 ≤ i ≤ n and c′i = 〈s
′
i, ρ

′
i〉 we have ∫−i(α1 . . . αk) ∈ ‖

j 6=i
ℏj(α1 . . . αk)

As a corollary by monotonicity of ‖ we obtain the following:

Corollary 14 (Futures as histories, with sum). For all programs s1 : · · · : sn, initial

stores ρinit , and traces 〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n such that for all

1 ≤ i ≤ n and c′i = 〈s
′
i, ρ

′
i〉 we have ∫−i(α1 . . . αk) ∈ ‖

j 6=i

(∑
k′≤k ℏj(α1 . . . αk′)

)

Finally we can prove soundness ofH from an acceptable analysis result:
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Lemma 15 (History soundness). For all programs s1 : · · · : sn, initial stores ρinit ,
and traces 〈s1, ρinit 〉 . . . 〈sn, ρinit 〉

α1=⇒ . . .
αk=⇒ c′1 . . . c

′
n such that for all 1 ≤ i ≤ n

and c′i = 〈s′i, ρ
′
i〉 and analysis answers Ê , X̂ such that ρinit ∈ γst(Ê iρ(first(si))),

∫−i(α1 . . . αk) ∈ L(Ê if (first(si))), and Ê , X̂ � si. we have ℏi(α1 . . . αk) ∈ L(p+ c)

where 〈p, c〉 = H(Ê i, X̂ i, s)

From a sound analysis result we utilize Corollary 14, Theorem 15, and monotonic-

ity of ‖ to obtain a (potentially better) approximation of the futures which proves the

soundness of the inter-process analysis result shuffling:

∫−i(α1 . . . αk) ∈‖
j 6=i


∑

k′≤k

ℏj(α1 . . . αk′)


 ⊆ ‖

j 6=i

〈pj ,cj〉=H(Êi,X̂ i,s)

L(pj + cj)

7 Implementation

To illustrate feasibility of our approach we have implemented a proof-of-concept pro-

totype in OCaml. The prototype takes roughly 4200 lines of code and is available for

download at https://github.com/jmid/nano-go. It is structured as a tradi-

tional front end with a lexer and a parser. The input is subsequently translated and la-

beled into an internal AST representation. The analysis walks this AST repeatedly until

stabilization. As the shuffling operator over LVREs is commutative and associative we

represent a sequence of shuffles r1 ‖ (r2 ‖ (· · · ‖ rn)) internally as a sorted sequence,

since the element order does not matter. Since L(∅ ‖ r) = L(∅) and L(ǫ ‖ r) = L(r)
we furthermore simplify LVREs internally from the former to the latter. Such meaning-

preserving simplifications are common in derivative-based language processors [Owens

et al., 2009]. We have implemented the closure requirement from the inter-process anal-

ysis specification in Fig. 10 as a local iteration, that repeats an inclusion of consecutive

reads-and-writes (and vice versa) until stabilization. As there are only finitely many

derivatives of a given future this iteration is bound to terminate. We only trigger the

closure iteration on newly formed entries. Internally in the intra-process analysis the

prototype widens on loop headers to ensure termination. Seen as a black box, the intra-

process analysis is a deterministic function expecting a future f̂ as input. Since there are

only finitely many derivatives of a given f̂ we do not need to widen over futures. Finally

we widen over abstract stores by pointwise lifting of a traditional interval widening op-

erator [Cousot and Cousot, 1976]. In the outer inter-process analysis the prototype starts

from a safe ⊤∗ approximation of futures and runs at most 100 iterations of the inter-

process analysis to improve on this worst case assumption.

We have used the js of ocaml compiler to create a client-side web-interface for

the prototype, available at https://jmid.github.io/nano-go/. To illustrate

the applicability of the analysis we have implemented two kinds of warnings based on

the analysis results: We mark a statement sℓ with Ê iρ(ℓ) = ⊥ as unreachable and read

and write actions with an empty derivative over futures as unable to succeed. Both of

these are safety properties compatible with the analysis output. Fig. 11 illustrates these

https://github.com/jmid/nano-go
https://jmid.github.io/nano-go/
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Fig. 11: Screenshot of the prototype’s web-interface

warnings in the web-interface on a simple deadlock example with two processes both

attempting to read before writing, thereby mutually blocking each other. In the example,

the prototype highlights the read statements in lines 7 and 12 as unable to succeed and

the subsequent lines as unreachable.

For a more elaborate example, consider the nano-Go program in Fig. 12 ported from

Stadtmüller et al. [2016]. The program declares two channels ch and done and consists

of 5 processes. The first process (Send) in line 6 sends an integer over channel ch and

thereby triggers one of two competing receiver processes (Recv1 and Recv2) in lines 7

and 12. The successful receiver acknowledges reception by subsequently writing the re-

ceived value on channel done. A fourth process (Work) in line 17 simply runs an infinite

loop, while the main process at the end expects to receive two acknowledgments. In the

first inter-process iteration the intra-process analysis infers the history ǫ+ch![42; 42] for

Send, ǫ+ch?[−∞; +∞]+ch?[−∞; +∞] ·done![−∞; +∞] for Recv1 and Recv2, ǫ
for Work, and ǫ+done?[−∞; +∞]+done?[−∞; +∞]·done?[−∞; +∞] for the final

process. Each of these are obtained from the worst case assumption ⊤∗ about futures.

Throughout the remaining inter-process iterations the results for Send and Work are un-

changed. In the second inter-process iteration when the above histories are shuffled and

fed to an intra-process re-analysis, Recv1’s and Recv2’s histories are both improved to

ǫ+ch?[42; 42]+ch?[42; 42] ·done![42; 42] and the final process’s history is improved

to ǫ + done?[−∞; +∞]. In the third iteration Recv1’s and Recv2’s histories remain

unchanged while the final process’s history is improved to ǫ+done?[42; 42]. The fourth
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1 package main

2

3 func main() {

4 ch := make(chan int)

5 done := make(chan int)

6 go func() { ch <- 42 }() // Send

7 go func() { // Recv1

8 var val int;

9 val = <-ch; done <- val;

10 }()

11 go func() { // Recv2

12 var val int;

13 val = <-ch; done <- val;

14 }()

15 go func() { for {} }() // Work

16 <-done;

17 <-done

18 }

Fig. 12: A deadlock example ported from Stadtmüller et al. [2016]

and final iteration confirms inter-process stabilization. The analysis prototype thereby

discovers that the second read statement in line 17 is unable to succeed.

Table 1 lists performance of the command-line prototype on a number of examples,

including two additional example programs ported from Stadtmüller et al. [2016]. The

reported timings were measured using the time tool for the natively compiled proto-

type running on a lightly loaded 3.1Ghz MacBook Pro laptop. For each program we

list the number of processes and channels, the number of inter-process analysis itera-

tions, and the minimum, maximum, and average analysis time across five analysis runs.

Whereas these numbers are promising they are also preliminary and included here only

to demonstrate feasibility of the approach. The deadlock examples from Fig. 11 and 12

illustrate how it is possible to catch some deadlocks despite analyzing a safety property

over-approximately. In contrast, our tool raises no warnings when analyzing the philo

dining philosophers program listed in Table 1 as it may execute successfully. In Sec.8

we further compare our approach with that of Stadtmüller et al. [2016].

In order to meet our long term goal of scalable inter-process analysis, we expect a

number of optimizations to be relevant. For one, an alternative implementation based

on extracting constraints would only need to traverse the AST once to eliminate the re-

peated interpretive overhead. For another, one could consider caching (or dependencies

between) the intra-process analysis results to avoid needless intra-process reanalysis.

Finally, our division into repeated intra-process analysis lends itself to parallelization.

program # proc. # chan. # interproc. iter. min time max time avg.time

initial example, Fig. 1 3 2 4 0.014 0.018 0.0158

simple deadlock, Fig. 11 2 2 3 0.010 0.012 0.0110

deadlock, Fig. 12 5 2 4 0.055 0.058 0.0572

fanIn 4 3 4 0.896 0.938 0.9140

philo 4 1 3 0.770 0.793 0.7822

Table 1: Preliminary performance measurement (all reported times are in seconds)
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8 Related work

Historically, channel-based concurrency in the style of Hoare’s CSP has influenced pro-

gramming languages such as Concurrent ML (CML) [Reppy, 1999] and more recently

Google’s Go programming language. Static analysis of CSP-like programs dates back

to an early application of abstract interpretation [Cousot and Cousot, 1980], a whole

program analysis. Since the nineties various forms of static analysis of concurrent pro-

grams have been investigated. In an early contribution Mercouroff [1991] developed an

abstract interpretation-based, polynomial-time analysis of CSP-like programs. It could

infer the communication count on each channel connecting two processes. Nielson and

Nielson [1994] developed a type and effect system for CML with dynamic process and

channel creation that could predict, e.g., the number of processes and channels cre-

ated during a program’s execution. Compared to our analysis it did not characterize the

content of the messages sent. Colby [1995] subsequently developed an abstract inter-

pretation of CML, including dynamic process creation. Akin to Nielson and Nielson

[1994] he analyzed the communication topology of a given program, to answer ques-

tions of the form ’which occurrences of receive can a transmit occurrence reach’?

In subsequent work various analyses for process calculi were investigated. For example,

Venet [1998] developed a framework for static analysis of π-calculus programs, Ryd-

hof Hansen et al. [1999] developed a static analyses for control flow and occurrence

counting of mobile ambients, and Feret [2000] developed control-flow and occurrence

counting analyses of π-calculus programs.

Kobayashi and co-authors have since developed a range of type-based static analy-

ses for π-calculus: Igarashi and Kobayashi [1997] developed a type-based analysis of

channel communication count, Kobayashi [2005] developed an type-based information

flow analysis including a type inference algorithm, Kobayashi [2006] developed a type

system that guarantees deadlock-freedom including an type inference algorithm, and

Kobayashi and Sangiorgi [2008] developed a hybrid lock-freedom analysis guarantee-

ing that certain communications will succeed while itself relying on deadlock-freedom

and termination analyses. Most recently Giachino et al. [2014] have developed a re-

finement of Kobayashi’s earlier deadlock-freedom analysis that can precisely detect

deadlocks in value-passing CCS (and pi-calculus) programs with arbitrary numbers of

processes while still permitting type inference. Since many of the process analyses can

themselves be viewed as operating over a program abstraction (a process calculus term),

they are inherently limited by the precision of this abstraction. Our work instead builds

on a reduced product, in which information about program variables can influence the

knowledge of network communication content and vice versa.

One may view our analysis analysis as an effect system specialized to inferring

histories of synchronous network communication akin to Skalka et al. [2008] with the

LVREs representing sets of traces of such events. In comparison to Skalka et al. [2008]

our approach however also infers more precise information about the value of individual

events: in that sense it refines the primitive notion of an event to a lattice value.

A number of recent papers develop static analyses for various subsets of Go. Ng

and Yoshida [2016] first developed a static deadlock detection system for a subset of Go

with a fixed number of processes and synchronous communication. Stadtmüller et al.

[2016] then developed a trace-based deadlock analysis of Synchronous Mini-Go, a syn-
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tactically slightly bigger language than nano-Go. It built on earlier work by Sulzmann

and Thiemann [2016] by first extracting regular expressions extended with forkable

behaviours and subsequently analyzing these for deadlocks. Technically this involved

both shuffling for the denotation of forkable behaviours and Brzozowski derivatives

for the subsequent analysis. Recently Lange et al. [2017] have developed a verification

framework for a bigger subset of Go, supporting both asynchronous message passing

and recursion. It works by approximating program behaviours by behavioural types and

a subsequent bounded verification of these. The above are primarily analyses for detect-

ing potential deadlocks which our approach is not particularly geared for. However our

value analysis is more precise since it utilizes a finer value abstraction than types. Bot-

bol et al. [2017] develop a whole-program approach based on lattice automata [Le Gall

and Jeannet, 2007] and symbolic transducers to analyze synchronous processes com-

municating via message passing and illustrate it with an application to MPI in C.

Miné [2014] developed a thread-modular analysis approach to the different setting

of shared variable concurrency, building on the idea of an interference domain that cap-

ture relations between globally mutable variables. Like our approach it may need to

reanalyze each thread repeatedly. In previous work we developed LVREs, including an

ordering algorithm and a widening operator [Midtgaard et al., 2016b] and illustrated the

domain with an intra-process analysis over LVRE futures. In a follow-up paper [Midt-

gaard et al., 2016a] we refined this idea to an inter-process analysis with LVREs for

both histories and futures, albeit limited to two synchronous processes. The current

paper generalizes from 2 to n processes by means a shuffle operator and reads off a his-

tory withH in favor of computing it within a fixed-point computation. Logozzo [2004]

previously suggested LVREs as an abstract domain but his formulation did not fit our

purpose. For one, he defines L(ǫ) = ∅ which is algebraically controversial. For another,

his structural widening operator was too sensitive to syntactic variations and did not

satisfy the classical widening definition [Midtgaard et al., 2016b].

9 Conclusion and perspectives

We have presented a modular approach to analyzing processes communicating by syn-

chronous message passing. It combines the analysis results of individual processes by

a dedicated shuffle operator. The approach has been formalized and proven sound for

a subset of the Go programming language. We see a number of advantages to the ap-

proach: Since each analysis iteration result is sound, one can run the analysis in the

background and warn of, e.g., an unsuccessful read or write, as soon as it is discovered.

It also opens for algorithmic improvements to save intra-process reanalysis when fu-

tures are unchanged. Finally the analysis cache naturally falls into separate per process

caches which opens up for parallelization.
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A Shuffling proofs

A.1 String operation ‖ is commutative

Proof. Let w,w′ be given. We proceed by simultaneous induction on the two strings.

case w = ǫ: By def. of ‖ we have ǫ ‖ w′ = {w′} = w′ ‖ ǫ
case w′ = ǫ: Symmetric to the above case.

case w = c1w1, w
′ = c2w2:

c1w1 ‖ c2w2

= {c1w | w ∈ w1 ‖ c2w2} ∪ {c2w | w ∈ c1w1 ‖ w2} (by def. of ‖)

= {c2w | w ∈ c1w1 ‖ w2} ∪ {c1w | w ∈ w1 ‖ c2w2} (by comm. of ∪)

= {c2w | w ∈ w2 ‖ c1w1} ∪ {c1w | w ∈ c2w2 ‖ w1} (by IH)

= c2w2 ‖ c1w1 (by def. of ‖)
⊓⊔

A.2 Language operation ‖ is commutative (Lemma 2 a)

Proof. Let L1, L2 be given.

L1 ‖ L2 = {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L1 ∧ w2 ∈ L2} (by def.)

= {w | w ∈ w2 ‖ w1 ∧ w2 ∈ L2 ∧ w1 ∈ L1} (by string-level comm.)

= L2 ‖ L1 (by def.)

⊓⊔

A.3 Shuffling distributes over union (Lemma 2 b)

Proof. Let L,L1, L2 be given.

L ‖ (L1 ∪ L2) = {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L ∧ w2 ∈ L1 ∪ L2} (by def. of ‖)

= {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L ∧ w2 ∈ L1} (by def. of ∪)

∪ {w | w ∈ w1 ‖ w2 ∧ w1 ∈ L ∧ w2 ∈ L2}

= (L ‖ L1) ∪ (L ‖ L2) (by def. of ‖)

By commutativity we immediately get (L1 ∪ L2) ‖ L = (L1 ‖ L) ∪ (L2 ‖ L). ⊓⊔

A.4 Shuffling is associative (Lemma 2 c)

Proof. By definition, given a string w ∈ L1 ‖ (L2 ‖ L3) there must exist strings

w1 ∈ L1, w2 ∈ L2, w3 ∈ L3 such that w ∈ w1 ‖ w23 and w23 ∈ w2 ‖ w3. We

need to argue that similar strings exist for the right-hand-side in order for the left-hand-

side L1 ‖ (L2 ‖ L3) to be included in the right-hand-side. We prove the property

{w1} ‖ (w2 ‖ w3) = (w1 ‖ w2) ‖ {w3} where the innermost shuffle operation is

over individual strings whereas the outermost shuffle operation is over languages. This

property generalizes the above to hold for any w23 ∈ w2 ‖ w3 and thereby proves the

desired. We prove the property by simultaneous induction on w1, w2, and w3.
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base case w1 = ǫ:

{ǫ} ‖ (w2 ‖ w3) = w2 ‖ w3 (by def. of lang-level ‖)

= {w2} ‖ {w3} (by def. of lang-level ‖)

= (ǫ ‖ w2) ‖ {w3} (by def. of string-level ‖)

base case w2 = ǫ:

{w1} ‖ (ǫ ‖ w3) = {w1} ‖ {w3} (by def. of string-level ‖)

= (w1 ‖ ǫ) ‖ {w3} (by def. of string-level ‖)

base case w3 = ǫ:

{w1} ‖ (w2 ‖ ǫ) = {w1} ‖ {w2} (by def. of string-level ‖)

= w1 ‖ w2 (by def. of lang-level ‖)

= (w1 ‖ w2) ‖ {ǫ} (by def. of lang-level ‖)

inductive step w1, w2, w3 6= ǫ:

{c1w1} ‖ (c2w2 ‖ c3w3)

= {c1w1} ‖ (c2 · (w2 ‖ c3w3) ∪ c3 · (c2w2 ‖ w3)) (by def. of string-level ‖)

= {c1w1} ‖ c2 · (w2 ‖ c3w3) ∪ {c1w1} ‖ c3 · (c2w2 ‖ w3) (by dist. of ‖)

= c1 · ({w1} ‖ c2 · (w2 ‖ c3w3)) ∪ c2 · ({c1w1} ‖ (w2 ‖ c3w3))

∪ c1 · ({w1} ‖ c3 · (c2w2 ‖ w3)) ∪ c3 · ({c1w1} ‖ (c2w2 ‖ w3))
(by def. of lang-level ‖)

= c1 · ({w1} ‖ c2 · (w2 ‖ c3w3) ∪ {w1} ‖ c3 · (c2w2 ‖ w3))

∪ c2 · ({c1w1} ‖ (w2 ‖ c3w3)) ∪ c3 · ({c1w1} ‖ (c2w2 ‖ w3))
(by dist. of ·, assoc. of ∪)

= c1 · ({w1} ‖ (c2 · (w2 ‖ c3w3) ∪ c3 · (c2w2 ‖ w3)))

∪ c2 · ({c1w1} ‖ (w2 ‖ c3w3)) ∪ c3 · ({c1w1} ‖ (c2w2 ‖ w3)) (by dist. of ‖)
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= c1 · ({w1} ‖ (c2w2 ‖ c3w3))

∪ c2 · ({c1w1} ‖ (w2 ‖ c3w3)) ∪ c3 · ({c1w1} ‖ (c2w2 ‖ w3))
(by def. of string-level ‖)

= c1 · ((w1 ‖ c2w2) ‖ {c3w3})

∪ c2 · ((c1w1 ‖ w2) ‖ {c3w3}) ∪ c3 · ((c1w1 ‖ c2w2) ‖ {w3}) (by IH)

= c1 · ((w1 ‖ c2w2) ‖ {c3w3}) ∪ c2 · ((c1w1 ‖ w2) ‖ {c3w3})

∪ c3 · ((c1 · (w1 ‖ c2w2) ∪ c2 · (c1w1 ‖ w2)) ‖ {w3})
(by def. of string-level ‖)

= c1 · ((w1 ‖ c2w2) ‖ {c3w3}) ∪ c2 · ((c1w1 ‖ w2) ‖ {c3w3})

∪ c3 · (c1 · (w1 ‖ c2w2) ‖ {w3} ∪ c2 · (c1w1 ‖ w2) ‖ {w3}) (by dist. of ‖)

= c1 · ((w1 ‖ c2w2) ‖ {c3w3}) ∪ c2 · ((c1w1 ‖ w2) ‖ {c3w3})

∪ c3 · (c1 · (w1 ‖ c2w2) ‖ {w3}) ∪ c3 · (c2 · (c1w1 ‖ w2) ‖ {w3})
(by dist. of ·)

= c1 · ((w1 ‖ c2w2) ‖ {c3w3}) ∪ c3 · (c1 · (w1 ‖ c2w2) ‖ {w3})

∪ c2 · ((c1w1 ‖ w2) ‖ {c3w3}) ∪ c3 · (c2 · (c1w1 ‖ w2) ‖ {w3})
(by assoc. of ∪)

= c1 · (w1 ‖ c2w2) ‖ {c3w3} ∪ c2 · (c1w1 ‖ w2) ‖ {c3w3}
(by def. of lang-level ‖)

= (c1 · (w1 ‖ c2w2) ∪ c2 · (c1w1 ‖ w2)) ‖ {c3w3} (by dist. of ‖)

= (c1w1 ‖ c2w2) ‖ {c3w3} (by def. of string-level ‖)

The proof for the other direction follows symmetrically. ⊓⊔

A.5 Generalized shuffle property

Proof. We proceed by (nested) induction on w1 (and w2). Let w1, w2, w3, w4 be given.

case w1 = ǫ: (ǫ ‖ w2) · (w3 ‖ w4) = w2 · (w3 ‖ w4)
We proceed to show w2 · (w3 ‖ w4) ⊆ w3 ‖ (w2 · w4) by inner induction on w2.
case w2 = ǫ: Since ǫ is the identity element for · we get:

ǫ · (w3 ‖ w4) = (w3 ‖ w4) = w3 ‖ (ǫ · w4)

case w2 = c2w
′
2:

c2w
′
2 · (w3 ‖ w4)

= c2 · (w
′
2 · (w3 ‖ w4)) (by assoc. of ·)

⊆ c2 · (w3 ‖ w
′
2 · w4) (by the inner IH)

⊆ w3 ‖ c2 · (w
′
2 · w4) (by the inner IH)

= w3 ‖ (c2 · w
′
2) · w4 (by assoc. of ·)

This concludes the inner induction.
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case w1 = c1w
′
1: We proceed by inner induction on w2.

case w2 = ǫ:

(c1w
′
1 ‖ ǫ) · (w3 ‖ w4)

= c1w
′
1 · (w3 ‖ w4) (by def. of ‖)

= c1 · (w
′
1 ‖ ǫ) · (w3 ‖ w4) (by def. of ‖)

⊆ c1 · (w
′
1 · w3 ‖ ǫ · w4) (by the outer IH)

= c1 · (w
′
1 · w3 ‖ w4) (ǫ id. for ·)

= (c1 ‖ ǫ) · (w
′
1 · w3 ‖ w4) (by def. of ‖)

⊆ (c1 · w
′
1 · w3) ‖ (ǫ · w4) (by the outer IH)

= (c1 · w
′
1) · w3 ‖ (ǫ · w4) (by assoc. of ·)

case w2 = c2w
′
2:

(c1w
′
1 ‖ c2w

′
2) · (w3 ‖ w4)

= (c1 · (w
′
1 ‖ c2w

′
2) ∪ c2 · (c1w

′
1 ‖ w

′
2)) · (w3 ‖ w4) (by def. of ‖)

= c1 · (w
′
1 ‖ c2w

′
2) · (w3 ‖ w4) ∪ c2 · (c1w

′
1 ‖ w

′
2) · (w3 ‖ w4)

(by dist. of ·)

⊆ c1 · (w
′
1 · w3 ‖ c2w

′
2 · w4) ∪ c2 · (c1w

′
1 ‖ w

′
2) · (w3 ‖ w4)

(by the outer IH)

⊆ c1 · (w
′
1 · w3 ‖ c2w

′
2 · w4) ∪ c2 · (c1w

′
1 · w3 ‖ w

′
2 · w4)

(by the inner IH)

= (c1w
′
1 · w3) ‖ (c2w

′
2 · w4) (by def. of ‖)

⊓⊔
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A.6 Brzozowski’s equation for LVREs with shuffle

Proof. Brzozowski’s equation for sub-expressions implies Brzozowski’s equation for

shuffle expressions:

L(r1 ‖ r2)

= L(r1) ‖ L(r2) (by def. of L)

= L(
∑

a∈Atoms(A)

a(D̂a(r1)) + δ(r1))‖ L(∑
a∈Atoms(A)

a(D̂a(r2)) + δ(r2))

(by Brzozowski’s equation)

=


 ⋃

a∈Atoms(A)

L(a(D̂a(r1)) + δ(r1))


‖


 ⋃

a∈Atoms(A)

L(a(D̂a(r2)) + δ(r2))




(by def. of L)

=


 ⋃

a∈Atoms(A)

L(a)L(D̂a(r1)) ∪ L(δ(r1))


‖


 ⋃

a∈Atoms(A)

L(a)L(D̂a(r2)) ∪ L(δ(r2))




(by def. of L)

=


 ⋃

a∈Atoms(A)

L(a)L(D̂a(r1)) ∪ L(δ(r1))


 · L(δ(r2))

∪ L(δ(r1)) ·


 ⋃

a∈Atoms(A)

L(a)L(D̂a(r2)) ∪ L(δ(r2))




∪
⋃

a∈Atoms(A)

L(a)


L(D̂a(r1))‖ ⋃

a′∈Atoms(A)

L(a′)L(D̂a′(r2))




∪
⋃

a∈Atoms(A)

L(a)


 ⋃

a′∈Atoms(A)

L(a′)L(D̂a′(r1))


 ‖ L(D̂a(r2))

(by def. of ‖)

= L(δ(r1)) · L(δ(r2))

∪
⋃

a∈Atoms(A)

L(a)


L(D̂a(r1))‖ ⋃

a′∈Atoms(A)

L(a′)L(D̂a′(r2)) ∪ L(δ(r2))




∪
⋃

a∈Atoms(A)

L(a)


 ⋃

a′∈Atoms(A)

L(a′)L(D̂a′(r1)) ∪ L(δ(r1))


 ‖ L(D̂a(r2))

(by def. of δ,‖)
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=
⋃

a∈Atoms(A)

L(a)
(
L(D̂a(r1)) ‖ L(r2)

)

∪
⋃

a∈Atoms(A)

L(a)
(
L(r1) ‖ L(D̂a(r2))

)

∪ L(δ(r1)) · L(δ(r2)) (by the IH)

=
⋃

a∈Atoms(A)

L(a) · L(D̂a(r1) ‖ r2)

∪
⋃

a∈Atoms(A)

L(a) · L(r1 ‖ D̂a(r2))

∪ L(δ(r1 ‖ r2)) (by def. of L)

=
⋃

a∈Atoms(A)

L(a) · (L(D̂a(r1) ‖ r2) ∪ L(r1 ‖ D̂a(r2)) ∪ L(δ(r1 ‖ r2))

(by dist. of ·)

=
⋃

a∈Atoms(A)

L(a) · (L(D̂a(r1) ‖ r2 + r1 ‖ D̂a(r2))) ∪ L(δ(r1 ‖ r2))

(by def. of L)

=
⋃

a∈Atoms(A)

L(a) · L(D̂a(r1 ‖ r2)) ∪ L(δ(r1 ‖ r2)) (by def. of D̂)

= L(
∑

a∈Atoms(A)

a · D̂a(r1 ‖ r2) + δ(r1 ‖ r2)) (by def. of L)

⊓⊔

A.7 Correctness of nullable

Proof. Assuming correctness for the sub-expressions we can prove correctness for a

shuffle expression:

ǫ ∈ L(r1 ‖ r2)

⇐⇒ ǫ ∈ L(
∑

a∈Atoms(A)

a D̂a(r1 ‖ r2) + δ(r1 ‖ r2)) (by Brzozowski’s equation)

⇐⇒ ǫ ∈
⋃

a∈Atoms(A)

L(a) · L(D̂a(r1 ‖ r2)) ∪ L(δ(r1 ‖ r2)) (by def. of L)

⇐⇒ ǫ ∈ L(δ(r1 ‖ r2)) (by def. of L, ·)

⇐⇒ ǫ ∈ L(δ(r1)) ∧ ǫ ∈ L(δ(r2)) (by def. of ‖,L)

⇐⇒ nullable(r1) ∧ nullable(r2) (by corr. for sub.expr.)

⇐⇒ nullable(r1 ‖ r2) (by def. of nullable)

⊓⊔
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A.8 Finitely many derivatives

We argue that for all r, there exists at most dr different derivatives up to ACI of

+. We first seek a syntactic characterization of derivatives. As a warm-up Consider

D̂a1a2
(r1 ‖ r2):

D̂a1a2
(r1 ‖ r2)

= D̂a2
(D̂a1

(r1 ‖ r2)) (by def. D̂)

= D̂a2
(D̂a1

(r1) ‖ r2 + r1 ‖ D̂a1
(r2)) (by def. D̂)

= D̂a2
(D̂a1

(r1) ‖ r2) + D̂a2
(r1 ‖ D̂a1

(r2)) (by def. D̂)

= D̂a2
(D̂a1

(r1)) ‖ r2 + D̂a1
(r1) ‖ D̂a2

(r2)

+ D̂a2
(r1) ‖ D̂a1

(r2) + r1 ‖ D̂a2
(D̂a1

(r2)) (by def. D̂)

Proof. In order to help with the syntactic characterization of derivatives we introduce

the short-hand notation r1 [ + r2 ]
b with the following meaning:

r1 [ + r2 ]
b =

{
r1 b = 0

r1 + r2 b = 1

By the definition a derivative of r1 ‖ r2 with respect to a single atom a may have up

to 2 different terms. As illustrated by our example above, for a derivative D̂a1...an
(r1 ‖ r2)

there may be up to 2n different elements in such a sum. We now prove the following

syntactic characterization:

∀r1, r2 ∈ R̂A, s ∈ Atoms(A)
∗
.

∃b1, . . . , bm ∈ {0, 1}, s1, . . . , sm, s′1, . . . , s
′
m ∈ Atoms(A)

∗
.

D̂s(r1 ‖ r2) =
∑

1≤i≤m

[ D̂si(r1) ‖ D̂s′
i
(r2) ]

bi where m = 2|s|

We proceed by induction on s:

case s = ǫ: |ǫ| = 0 hence there exists s1 = ǫ, s′1 = ǫ, and b1 = 1 such that

D̂ǫ(r1 ‖ r2) = r1 ‖ r2 =
∑

1≤i≤20

[ D̂si(r1) ‖ D̂s′
i
(r2) ]

bi

case s = s′a:

D̂s′a(r1 ‖ r2)

= D̂a(D̂s′(r1 ‖ r2)) (by def. of D̂)

= D̂a(
∑

1≤i≤m′

[ D̂si(r1) ‖ D̂s′
i
(r2) ]

bi ) (by IH)

=
∑

1≤i≤m′

[ D̂a(D̂si(r1) ‖ D̂s′
i
(r2)) ]

bi (by def. of D̂)

=
∑

1≤i≤m′

[ D̂sia(r1) ‖ D̂s′
i
(r2) ]

bi + [ D̂si(r1) ‖ D̂s′
i
a(r2) ]

bi (by def. of D̂)
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for m′ = 2|s
′| values of b1, . . . , bm′ , s1, . . . , sm′ , and s′1, . . . , s

′
m′ . In terms aris-

ing from the first line we add the atom a to either the sequence si or s′i to form

corresponding sequences for the inductively formed term while preserving the cor-

responding value of bi. We can do so with 2 · m′ Boolean and sequence values

bj , sj , s
′
j . We thereby need 2 ·m′ = 2 · 2|s

′| = 2|s
′|+1 = 2|s

′a| different Boolean

and sequence values bj , sj , s
′
j .

There are only as many different derivatives (up to ACI of +) as there are different

sets of such pairs. For each of the dr1 different first components in such pairs there are

at most dr2 different second components and hence at most dr1 ∗ dr2 different pairs.

This gives an upper bound of 2dr1
∗dr2 different sets of such pairs. ⊓⊔

A.9 r̂ange partitions (Lemma 8)

Proof. Let r1, r2, [ai] ∈ r̂ange(r1 ‖ r2), a, a
′ ∈ Atoms(A) be given and assume that

a, a′ ∈ [ai]. By the IH we can furthermore assume the property for r1 and r2. Since

a, a′ ∈ [ai] ∈ r̂ange(r1 ‖ r2) = ôverlay (r̂ange(r1), r̂ange(r2)) we must have a, a′ ∈
[a1] ∈ r̂ange(r1) and a, a′ ∈ [a2] ∈ r̂ange(r2) for some equivalence classes [a1] and

[a2] since ôverlay computes a partition refinement of both r̂ange(r1) and r̂ange(r2).
We therefore have

D̂a(r1 ‖ r2) = D̂a(r1) ‖ r2 + r1 ‖ D̂a(r2) (by def. of D̂)

= D̂a′(r1) ‖ r2 + r1 ‖ D̂a′(r2) (by the above, IH)

= D̂a′(r1 ‖ r2) (by def. of D̂)

⊓⊔
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B Soundness proofs

B.1 One step statement soundness, terminal (Lemma 10)

We first observe that for α = τ we have

D̂
τ̂
(Ê if (first(s))) = D̂ǫ̂(Ê if (first(s))) = D̂ǫ(Ê if (first(s))) = Ê

i
f (first(s))

which we utilize in the proof of both Lemmas 11 and 10.

Proof. Let s, ρ, ρ1, α, Ê i, X̂ i be given. Assume 〈s, ρ〉
α
−→ ρ1, Ê i, X̂ i � s, and

ρ ∈ γst(Ê iρ(first(s))).

case SKIP: By assumption 〈skipℓ, ρ〉
τ
−→ ρ, Ê i, X̂ i � skipℓ, and ρ ∈ γst(Ê iρ(ℓ)). But

then last(skipℓ) = {ℓ} and ρ ∈ γst(Ê iρ(ℓ)) ⊆ γst(X̂ i
ρ(ℓ)) by the analysis speci-

fication and monotonicity of γst . Furthermore D̂
τ̂
(Ê if (first(s))) = Ê

i
f (first(s)) ⊏∼

X̂ i
f (ℓ).

case ASSIGN: By assumption 〈x =ℓ e, ρ〉
τ
−→ ρ[x 7→ v] where ρ ⊢A e ⇓ v and Ê i, X̂ i �

x =ℓ e and ρ ∈ γst(Ê iρ(ℓ)). But then last(x =ℓ e) = {ℓ}, v ∈ γv(Â(e, Ê iρ(ℓ))), and

hence ρ[x 7→ v] ∈ γst(âssign(Ê iρ(ℓ), x , Â(e, Ê
i
ρ(ℓ)))) ⊆ γst(X̂ i

ρ(ℓ)) by Lemma 9

and the analysis specification. Again D̂
τ̂
(Ê if (first(s))) = Ê if (first(s)) ⊏∼ X̂

i
f (ℓ)

follows by the analysis specification.

case FOR2: By assumption we have 〈for bℓ { s1 }, ρ〉
τ
−→ ρ and ρ ⊢B b ⇓ ff from the

semantics and (f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂ i(ℓ) where (ρ̂, ĥ, f̂) = Ê i(ℓ). From Lemma 9

and monotonicity of γst we therefore get ρ ∈ γst(f̂alse(b, Ê iρ(ℓ))) ⊆ γst(X̂ i
ρ(ℓ)).

From the above we have Ê if (ℓ) ⊏∼ X̂
i
f (ℓ) hence D̂

τ̂
(Ê if (first(s))) = Ê

i
f (first(s)) ⊏∼

X̂ i
f (ℓ).

The cases SEQ1, SEQ2, IF1, IF2, SELECT, READ, WRITE, and FOR1 are vacuously

true as they do not lead to a terminal configuration.

B.2 One step statement soundness, non-terminal (Lemma 11)

We warm up with a helper lemma:

Lemma 16 (Preservation of last). 〈s, ρ〉
α
−→ 〈s′, ρ′〉 =⇒ last(s′) ⊆ last(s)

Proof. By structural induction on s. Let s, s1, ρ, ρ1, α, Ê i, X̂ i be given. Assume

〈s, ρ〉
α
−→ 〈s1, ρ1〉, Ê i, X̂ i � s, ρ ∈ γst(Ê iρ(first(s))), and D̂

α̂
(Ê if (first(s))) 6⊏∼ ∅.

case SEQ1: Then 〈s1 ; s2, ρ〉
α
−→ 〈s3 ; s2, ρ1〉 and 〈s1, ρ〉

α
−→ 〈s3, ρ1〉. Furthermore

first(s1 ; s2) = first(s1) and from the analysis specification we therefore have

Ê i, X̂ i � s1. Since ρ ∈ Ê i(first(s1 ; s2)) = Ê i(first(s1)) we can therefore apply
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the induction hypothesis and conclude Ê i, X̂ i � s3, ρ1 ∈ γst(Ê iρ(first(s3))) and

D̂
α̂
(Ê if (first(s1))) ⊏∼ Ê

i
f (first(s3)). Furthermore first(s3) = first(s3 ; s2).

(Part 1): We need to show Ê i, X̂ i � s3 ; s2 or equivalently (a) Ê i, X̂ i � s3, (b)

Ê i, X̂ i � s2, and (c) X̂ i(ℓ3) ⊑ Ê i(first(s2)) for all ℓ3 ∈ last(s3).
(a) follows immediately from the induction hypothesis and (b) follows from the

assumption Ê i, X̂ i � s1 ; s2. From the same assumption we furthermore have

X̂ i(ℓ1) ⊑ Ê i(first(s2)) for all ℓ1 ∈ last(s1) which together with last(s3) ⊆

last(s1) from Lemma 16 means that X̂ i(ℓ3) ⊑ Ê i(first(s2)) for all ℓ3 ∈ last(s3) ⊆
last(s1) and thus yields (c).

For parts 2 and 3 since Ê i(first(s3)) = Ê i(first(s3 ; s2)) we therefore have ρ1 ∈

γst(Ê iρ(first(s3))) = γst(Ê iρ(first(s3 ; s2))) and also D̂
α̂
(Ê if (first(s1 ; s2))) =

D̂
α̂
(Ê if (first(s1))) ⊏∼ Ê

i
f (first(s3)) = Ê

i
f (first(s3 ; s2)).

case SEQ2: Then 〈s1 ; s2, ρ〉
α
−→ 〈s2, ρ1〉 and 〈s1, ρ〉

α
−→ ρ1. Furthermore we have

first(s1 ; s2) = first(s1) and from the analysis specification we therefore have

Ê i, X̂ i � s1, Ê i, X̂ i � s2, and ∀ℓ ∈ last(s1). X̂ i(ℓ) ⊑ Ê i(first(s2)). Since

ρ ∈ Ê i(first(s1 ; s2)) = Ê i(first(s1)) we can therefore apply Lemma 10 and

conclude ρ1 ∈ γst(X̂ i
ρ(ℓ)) and D̂

α̂
(Ê if (first(s1))) ⊏∼ X̂

i
f (ℓ) for all ℓ ∈ last(s1). As

a consequence for any ℓ ∈ last(s1) we have ρ1 ∈ γst(X̂ i
ρ(ℓ)) ⊆ γst(Ê i(first(s2)))

(by monotonicity of γst ) and D̂
α̂
(Ê if (first(s1))) ⊏∼ X̂

i
f (ℓ) ⊏∼ Ê

i
f (first(s2)).

case IF1: Then 〈if bℓ { s1 } else { s2 }, ρ〉
τ
−→ 〈s1, ρ〉 and ρ ⊢B b ⇓ tt. Further-

more first(if bℓ { s1 } else { s2 }) = ℓ and from the analysis specification we

have that Ê i, X̂ i � s1 and (t̂rue(b, ρ̂), f̂) ⊑ Ê i(first(s1)) where (ρ̂, f̂) = Ê i(ℓ).
Part 1 follows immediately from the analysis specification. For part 2 from Lemma 9

and monotonicity of γst we get ρ ∈ γst(t̂rue(b, Ê iρ(ℓ))) ⊆ γst(Ê iρ(first(s1))).

For part 3 we know Ê if (ℓ) ⊏∼ Ê
i
f (first(s1)) and therefore D̂

τ̂
(Ê if (ℓ)) = Ê if (ℓ) ⊏∼

Ê if (first(s1)).

case IF2: Then 〈if bℓ { s1 } else { s2 }, ρ〉
τ
−→ 〈s2, ρ〉 and ρ ⊢B b ⇓ ff. Further-

more first(if bℓ { s1 } else { s2 }) = ℓ and from the analysis specification we

have that Ê i, X̂ i � s2 and (f̂alse(b, ρ̂), f̂) ⊑ Ê i(first(s2)) where (ρ̂, f̂) = Ê i(ℓ).
Part 1 follows immediately from the analysis specification. For part 2 from Lemma 9

and monotonicity of γst we get ρ ∈ γst(f̂alse(b, Ê iρ(ℓ))) ⊆ γst(Ê iρ(first(s2))).

For part 3 we know Ê if (ℓ) ⊏∼ Ê
i
f (first(s2)) and therefore D̂

τ̂
(Ê if (ℓ)) = Ê if (ℓ) ⊏∼

Ê if (first(s2)).

case FOR1: By assumption we have 〈for bℓ { s1 }, ρ〉
τ
−→ 〈s1 ; for bℓ { s1 }, ρ〉 and

ρ ⊢B b ⇓ tt from the semantics and (t̂rue(b, ρ̂), f̂) ⊑ Ê i(first(s1)) where

(ρ̂, f̂) = Ê i(ℓ) and for all ℓ1 ∈ last(s1). X̂ i(ℓ1) ⊑ Ê i(ℓ) from the analysis specifi-

cation. Furthermore we have first(s1 ; for bℓ { s1 }) = first(s1).

For part 1 we need to argue that Ê i, X̂ i � s1 ; for bℓ { s1 } meaning that (a)

Ê i, X̂ i � s1, (b) Ê i, X̂ i � for bℓ { s1 }, and (c) ∀ℓ1 ∈ last(s1). X̂ i(ℓ1) ⊑
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Ê i(first(s1)). This is however immediate as (b) (and consequently (a)) and (c) all

follow from our assumptions.

Part 2 follows from Lemma 9 and monotonicity of γst : ρ ∈ γst(t̂rue(b, Ê iρ(ℓ))) ⊆

γst(Ê iρ(first(s1))) = γst(Ê iρ(first(s1 ; for bℓ { s1 }))). For part 3 we have Ê if (ℓ) ⊏∼

Ê if (first(s1)) hence D̂
τ̂
(Ê if (ℓ)) = Ê

i
f (ℓ) ⊏∼ Ê

i
f (first(s1)) = Ê

i
f (first(s1 ; for bℓ { s1 })).

case SELECT: By assumption we have 〈selectℓ { a1 . . . an }, ρ〉
α
−→ 〈sj , ρ

′〉 and 〈aj , ρ〉
α
−→

〈sj , ρ
′〉 for some 1 ≤ j ≤ n. Furthermore we have Ê i, X̂ i � aj and Ê i(ℓ) ⊑

Ê i(first(aj)) from the analysis specification and first(selectℓ { a1 . . . an }) = ℓ.

We therefore have ρ ∈ γst(Ê iρ(ℓ)) ⊆ γst(Ê iρ(first(aj))) by monotonicity of γst
and hence by the IH (with s ranging over both statements and cases) we conclude

Ê i, X̂ i � sj , ρ′ ∈ γst(Ê iρ(first(sj))) and D̂
α̂
(Ê if (ℓ)) ⊏∼ Ê

i
f (first(sj)) as desired.

case READ: By assumption we have 〈case x = <-ℓ ch: s, ρ〉
ch?v
−→ 〈s, ρ[x 7→ v]〉 and

Ê i, X̂ i � case x = <-ℓ ch: s. By definition first(case x = <-ℓ ch: s) = ℓ and

by assumption ρ ∈ γst(Ê iρ(ℓ)), and D̂̂
ch?v

(Ê if (ℓ)) 6⊏∼ ∅.

We have that [ch; ch] is an atom in Interval , that αv({v}) is an atom in V̂al , that

([ch; ch], αv({v})) is an atom in Ŵrite(V̂al), and that

̂ch?v = ĉh!v = αch({ch!v}) = (αwr ({ch!v}), αrd(∅))

= (αwr ({ch!v}), (⊥,⊥))

= ((αInt ({ch}), αv({v})), (⊥,⊥))

= (([ch; ch], αv({v})), (⊥,⊥))

= ch!αv({v})

is an atom in Ĉh(V̂al). Let (ρ̂, f̂) = Ê i(ℓ). Since D̂
ĉh!v

(f̂) 6⊏∼ ∅ there exists an

equivalence class [ch!v̂a] ∈ r̂ange(f̂) such that αch({ch!v}) = ch!(αv({v)}) ∈

[ch!v̂a] and D̂αch ({ch!v})(f̂) = D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅.

Furthermore, by our assumption about p̂roject : αch({ch!v}) = ch!(αv({v})) ⊑

p̂roject([ch!v̂a]) = ch!v̂ and therefore

ch!v ∈ γch(p̂roject([ch!v̂a]))

= γch(ch!v̂)

= γwr ((ch, v̂))

= {[ch; ch]!v | ch ∈ γInt([ch; ch]) ∧ v ∈ γv(v̂)}

which means that v ∈ γv(v̂). But then by the implication in the analysis specifi-

cation âssign(ρ̂, x , v̂) ⊑ X̂ i
ρ(ℓ) ⊑ Ê

i
ρ(first(s)) and D̂r̂epr([ch!v̂a])(f̂) ⊏∼ X̂

i
f (ℓ) ⊏∼

Ê if (first(s)).

Part 1 Ê i, X̂ i � s now follows immediately from the analysis specification.

Part 2 follows from Lemma 9 and the Galois connection properties of αst and γst :

ρ[x 7→ v] ∈ γst(âssign(ρ̂, x , v̂)) ⊆ γst(Ê iρ(first(s))),



32 Jan Midtgaard, Flemming Nielson, and Hanne Riis Nielson

Part 3 also follows from the above: D̂̂
ch?v

(f̂) = D̂
ĉh!v

(f̂) = D̂r̂epr([ch!v̂a])(f̂) ⊏∼

X̂ i
f (ℓ) ⊏∼ Ê

i
f (first(s)).

case WRITE: By assumption we have 〈case ch <-ℓ e: s, ρ〉
ch!v
−→ 〈s, ρ〉 and ρ ⊢A e ⇓

v from the semantics. By definition we have first(case ch <-ℓ e: s) = ℓ and by

assumption Ê i, X̂ i � case ch <-ℓ e: s, ρ ∈ γst(Ê iρ(ℓ)), and D̂̂
ch!v

(Ê if (ℓ)) 6⊏∼∅.
Furthermore

ĉh!v = ĉh?v = αch({ch?v})

= (αwr (∅), αrd ({ch?v}))

= ((⊥,⊥), αrd ({ch?v}))

= ((⊥,⊥), (αInt ({ch}), αv({v})))

= ((⊥,⊥), ([ch; ch], αv({v})))

= ch?αv({v})

is an atom in Ĉh(V̂al). Let (ρ̂, f̂) = Ê i(ℓ). Hence there exists an equivalence

class [ch?v̂a] ∈ r̂ange(f̂) such that αch({ch?v}) = ch?(αv({v)}) ∈ [ch?v̂a] and

D̂αch({ch?v})(f̂) = D̂r̂epr([ch?v̂a])(f̂) 6⊏∼ ∅.

Furthermore, by our assumption about p̂roject : αch({ch?v}) = ch?(αv({v})) ⊑

p̂roject([ch?v̂a]) = ch?v̂ and therefore

ch?v ∈ γch(p̂roject([ch?v̂a]))

= γch(ch?v̂)

= γrd((ch, v̂))

= {[ch; ch]?v | ch ∈ γInt([ch; ch]) ∧ v ∈ γv(v̂)}

which means that v ∈ γv(v̂). But by Lemma 9 we also have v ∈ γv(v̂
′) for v̂′ =

Â(ρ̂, e) hence v ∈ γv(v̂) ∩ γv(v̂
′) = γv(v̂ ⊓ v̂′) which means that v̂ ⊓ v̂′ 6= ⊥. But

then by the implication in the analysis specification ρ̂ ⊑ X̂ i
ρ(ℓ) ⊑ Ê

i
ρ(first(s)) and

D̂r̂epr([ch?v̂a])(f̂) ⊏∼ X̂
i
f (ℓ) ⊏∼ Ê

i
f (first(s)).

Part 1 Ê i, X̂ i � s now follows immediately from the analysis specification.

Part 2 follows from our assumptions, by monotonicity of γst , and transitivity of ⊆:

ρ ∈ γst(ρ̂) ⊆ γst(Ê iρ(first(s))).

Part 3 follows by the above and transitivity: D̂̂
ch!v

(Ê if (ℓ)) = D̂
ĉh?v

(Ê if (ℓ)) =

D̂r̂epr([ch?v̂a])(Ê
i
f (ℓ)) ⊏∼ Ê

i
f (first(s))

The cases SKIP, ASSIGN, and FOR2 are vacuously true as they lead to a terminal con-

figuration.

B.3 Analysis soundness (Theorem 12)

Proof. We prove the following generalization from which analysis soundness follows

immediately as a corollary:
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For all programs s1 : · · · : sn, initial stores ρinit , acceptable analysis answers Ê i, X̂ i

such that Ê i, X̂ i � s1 : · · · : sn, ∀i. ρinit ∈ γst(Ê iρ(first(si))), and arbitrary traces

〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n such that ∀i. ∫−i(α1 . . . αk) ∈ L(Ê if (first(si)))

then for any i such that 1 ≤ i ≤ n and c′i = 〈s
′
i, ρ

′
i〉 we have

Ê i, X̂ i � s′i ∧ D̂ ̂∫−i(α1...αk)
(Ê if (first(si))) ⊏∼ Ê

i
f (first(s

′
i)) ∧ ρ′i ∈ γst(Ê iρ(first(s

′
i)))

We proceed by induction on the length of the trace.

case k = 0: Then for any i we have 〈si, ρinit 〉 = c′i = 〈s
′
i, ρ

′
i〉 and α1 . . . αk = ǫ. Since

Ê i, X̂ i � s1 : · · · : sn we immediately have Ê i, X̂ i � si and D̂ǫ(Ê if (first(si))) =

Ê if (first(si)) ⊏∼ Ê
i
f (first(si)) by reflexivity. Furthermore ρinit ∈ γst(Ê iρ(first(si)))

follows from our assumptions.

case k = k′ + 1: Given a program, a solution to the analysis specification, and a trace

〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk′

=⇒ c′1 . . . c
′
n

αk′+1

=⇒ c′′1 . . . c
′′
n satisfying the above

requirements, by the induction hypothesis for any c′i = 〈s
′
i, ρ

′
i〉 we have Ê i, X̂ i �

s′i, D̂ ̂∫−i(α1...αk′ )
(Ê if (first(si))) ⊏∼ Ê

i
f (first(s

′
i)), and ρ′i ∈ γst(Ê iρ(first(s

′
i))). We

proceed by case analysis on the applied system rule.

case SYSTAU: c′1 . . . c
′
n

i,τ
=⇒ c′′1 . . . c

′′
n for some process number 1 ≤ i ≤ n. Fur-

thermore we know that 〈s′i, ρ
′
i〉

τ
−→ 〈s′′i , ρ

′′
i 〉 and that for k 6= i we have c′k =

〈s′k, ρ
′
k〉 = 〈s

′′
k , ρ

′′
k〉 = c′′k , Êk, X̂ k � s′′k , ρ′′k = ρ′k ∈ γst(Êkρ (first(s

′
k))) =

γst(Êkρ (first(s
′′
k))) and

D̂ ̂∫−k(α1...αk′ ·(i,τ))
(Êkf (first(sk))) = D̂̂∫−k(i,τ)

(D̂ ̂∫−k(α1...αk′ )
(Êkf (first(sk))))

(by def. of D̂)

= D̂ ̂∫−k(α1...αk′ )
(Êkf (first(sk)))

(by def. of ∫−k, D̂)

⊏∼ Ê
k
f (first(s

′
k)) (by IH)

= Êkf (first(s
′′
k)) (by the above)

By assumption ∫−i(α1 . . . αk′(i, τ)) = ∫−i(α1 . . . αk′) ∈ L(Ê if (first(si))) hence

D̂ ̂∫−i(α1...αk′ (i,τ))
(Ê if (first(si)))

= D̂
∫̂−i(i,τ)

(D̂ ̂∫−i(α1...αk′ )
(Ê if (first(si)))) (by def. of D̂)

⊏∼ D̂ǫ(Ê if (first(s
′
i))) (by monotonicity of D̂, IH)

6⊏∼ ∅ (by Lemma 5)

Hence by Lemma 11 we get Ê i, X̂ i � s′′i and ρ′′i ∈ γst(Ê iρ(first(s
′′
i ))). Finally

since Ê if (first(s
′
i)) = D̂ǫ(Ê if (first(s

′
i))) = D̂τ̂

(Ê if (first(s
′
i))) ⊏∼ Ê

i
f (first(s

′′
i ))
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and D̂ ̂∫−i(α1...αk′ ·(i,τ))
(Ê if (first(si))) ⊏∼ Ê

i
f (first(s

′
i)) by the above we can con-

clude that D̂ ̂∫−i(α1...αk′ ·(i,τ))
(Ê if (first(si))) ⊏∼ Ê

i
f (first(s

′′
i )) by transitivity of

⊏∼.

case SYSCOMM: We know that 〈s′i, ρ
′
i〉

ch!v
−→ 〈s′′i , ρ

′′
i 〉 and 〈s′j , ρ

′
j〉

ch?v
−→ 〈s′′j , ρ

′′
j 〉

for some i, j such that i 6= j.

For k 6∈ {i, j} we have c′k = 〈s′k, ρ
′
k〉 = 〈s′′k , ρ

′′
k〉 = c′′k and therefore we

immediately get Êk, X̂ k � s′′k and ρ′′k ∈ γst(Êkρ (first(s
′′
k))).

By assumption ∫−k(α1 . . . αk′(i, ch, v, j)) = ∫−k(α1 . . . αk′) · ∫−k(i, ch, v, j) ∈

L(Êkf (first(sk))) and by the induction hypothesis we have

D̂ ̂∫−k(α1...αk′ )
(Êkf (first(sk))) ⊏∼ Ê

k
f (first(s

′
k))

Hence by Lemma 5 we have either ch!v · ch?v ∈ L(Êkf (first(s
′
k))) (when

i < j) or ch?v·ch!v ∈ L(Êkf (first(s
′
k))) (when i > j). As a consequence when

i < j according to the analysis specification there must exist an equivalence

class [ch′!v̂′] such that ĉh!v ∈ [ch′!v̂′] with the property that

D̂ ̂ch!v·ch?v
(Êkf (first(s

′
k))) = D̂r̂epr([ch′!v̂′])·r̂epr([ch′?v̂′])(Ê

k
f (first(s

′
k)))

⊏∼ Ê
k
f (first(s

′
k))

(and similarly when i > j). Hence we have

D̂ ̂∫−k(α1...αk′ ·(i,ch,v,j))
(Êkf (first(sk))) = D̂ ̂∫−k(i,ch,v,j)

(D̂ ̂∫−k(α1...αk′ )
(Êkf (first(sk))))

(by def. of D̂)

⊏∼ D̂ ̂∫−k(i,ch,v,j)
(Êkf (first(s

′
k)))

(by monotonicity of D̂, IH)

=

{
D̂ ̂ch!v·ch?v

(Êkf (first(s
′
k))) i < j

D̂ ̂ch?v·ch!v
(Êkf (first(s

′
k))) i > j
(by def. of ∫−k)

⊏∼ Ê
k
f (first(s

′
k)) (by the above)

= Êkf (first(s
′′
k)) (by further above)

from our assumptions.
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i case: By assumption ∫−i(α1 . . . αk′(i, ch, v, j)) = ∫−i(α1 . . . αk′) · ch!v ∈

L(Ê if (first(si))) hence

D̂ ̂∫−i(α1...αk′ (i,ch,v,j))
(Ê if (first(si)))

= D̂ ̂∫−i(i,ch,v,j)
(D̂ ̂∫−i(α1...αk′ )

(Ê if (first(si)))) (by def. of D̂)

= D̂
ĉh!v

(D̂ ̂∫−i(α1...αk′ )
(Ê if (first(si)))) (by def. of D̂)

⊏∼ D̂ĉh!v
(Ê if (first(s

′
i))) (by monotonicity of D̂, IH)

6⊏∼ ∅ (by Lemma 5)

Hence from Lemma 11 we get Ê i, X̂ i � s′′i and ρ′′i ∈ γst(Ê iρ(first(s
′′
i ))).

Finally

D̂ ̂∫−i(α1...αk′ ·(i,ch,v,j))
(Ê if (first(si))) = D̂ ̂∫−i(i,ch,v,j)

(D̂ ̂∫−i(α1...αk′ )
(Ê if (first(si))))

(by def. of D̂)

= D̂
ĉh?v

(D̂ ̂∫−i(α1...αk′ )
(Ê if (first(si))))

(by def. of ∫−i)

⊏∼ D̂ĉh?v
(Ê if (first(s

′
i)))

(by monotonicity of D̂, IH)

= D̂̂
ch!v

(Ê if (first(s
′
i))) (by def. of ·)

⊏∼ Ê
i
f (first(s

′′
i )) (by Lemma 11)

j case: By assumption ∫−j(α1 . . . αk′(i, ch, v, j)) = ∫−j(α1 . . . αk′) · ch?v ∈

L(Êjf (first(sj))) hence

D̂ ̂∫−j(α1...αk′ (i,ch,v,j))
(Êjf (first(sj)))

= D̂ ̂∫−j(i,ch,v,j)
(D̂ ̂∫−j(α1...αk′ )

(Êjf (first(sj)))) (by def. of D̂)

= D̂
ĉh?v

(D̂ ̂∫−j(α1...αk′ )
(Êjf (first(sj)))) (by def. of D̂)

⊏∼ D̂ĉh?v
(Ê if (first(s

′
i))) (by monotonicity of D̂, IH)

6⊏∼ ∅ (by Lemma 5)

Hence from Lemma 11 we get Êj , X̂ j � s′′j and ρ′′j ∈ γst(Ê
j
ρ(first(s′′j ))).
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Finally

D̂ ̂∫−j(α1...αk′ ·(i,ch,v,j))
(Êjf (first(sj))) = D̂ ̂∫−j(i,ch,v,j)

(D̂ ̂∫−j(α1...αk′ )
(Êjf (first(sj))))

(by def. of D̂)

= D̂
ĉh!v

(D̂ ̂∫−j(α1...αk′ )
(Êjf (first(sj))))

(by def. of ∫−j)

⊏∼ D̂ĉh!v
(Êjf (first(s

′
j)))

(by monotonicity of D̂, IH)

= D̂̂
ch?v

(Êjf (first(s
′
j))) (by def. of ·)

⊏∼ Ê
j
f (first(s

′′
j )) (by Lemma 11)

⊓⊔

B.4 Futures as histories, sans sum (Lemma 13)

Proof. By induction on the length of the trace. Let s1 : · · · : sn, ρinit , and an arbitrary

trace 〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n be given.

case k = 0: First ℏi(ǫ) = ǫ and ∫−i(ǫ) = ǫ for any i. Let i be given. Then‖
j 6=i

ℏj(ǫ) =

‖
j 6=i

ǫ = {ǫ}

case k = k′ + 1: Given a program and a trace 〈s1, ρinit 〉 . . . 〈sn, ρinit 〉
α1=⇒ . . .

αk′

=⇒

c′1 . . . c
′
n

αk′+1

=⇒ c′′1 . . . c
′′
n satisfying the above requirements, by the IH for any c′i =

〈s′i, ρ
′
i〉we have ∫−i(α1 . . . αk′) ∈ ‖

j 6=i
ℏj(α1 . . . αk′). We proceed by case analysis

on the applied system rule.

case SYSTAU: By definition, for any i, j we have ℏi(α1 . . . αk′ · (j, τ)) = ℏi(α1 . . . αk′)
and ∫−i(α1 . . . αk′ · (j, τ)) = ∫−i(α1 . . . αk′). Therefore

∫−i(α1 . . . αk′ · (l, τ)) = ∫−i(α1 . . . αk′) (by def. of ∫−i)

∈‖
j 6=i

ℏj(α1 . . . αk′) (by the IH)

=‖
j 6=i

ℏj(α1 . . . αk′+1) (by def. of ℏj)

case SYSCOMM: c′1 . . . c
′
n

i,ch,v,j
=⇒ c′′1 . . . c

′′
n

There are now three sub-cases to consider:
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Writer index i on LHS: We have ∫−i(α1 . . . αk′ · (i, ch, v, j)) = ∫−i(α1 . . . αk′)·
ch?v and ℏj(α1 . . . αk′ · (i, ch, v, j)) = ℏj(α1 . . . αk′) · ch?v. Therefore

∫−i(α1 . . . αk′ · (i, ch, v, j))

= ∫−i(α1 . . . αk′) · ch?v (by def. of ∫−i)

∈


‖

l 6=i

ℏl(α1 . . . αk′)


 · ch?v (by the IH, · monotone)

⊆ ℏj(α1 . . . αk′) · ch?v ‖‖
l 6=i,j

ℏl(α1 . . . αk′) (by Lemma 3)

= ℏj(α1 . . . αk′ · (i, ch, v, j)) ‖‖
l 6=i,j

ℏl(α1 . . . αk′ · (i, ch, v, j))

(by def. of ℏl)

=‖
l 6=i

ℏl(α1 . . . αk′+1) (simplify)

Reader index j on LHS: We have ∫−j(α1 . . . αk′ · (i, ch, v, j)) = ∫−j(α1 . . . αk′)·
ch!v and ℏi(α1 . . . αk′ · (i, ch, v, j)) = ℏi(α1 . . . αk′) · ch!v. Therefore

∫−j(α1 . . . αk′ · (i, ch, v, j))

= ∫−j(α1 . . . αk′) · ch!v (by def. of ∫−j)

∈


‖

l 6=j

ℏl(α1 . . . αk′)


 · ch!v (by the IH, · monotone)

⊆ ℏi(α1 . . . αk′) · ch!v ‖ ‖
l 6=i,j

ℏl(α1 . . . αk′) (by Lemma 3)

= ℏi(α1 . . . αk′ · (i, ch, v, j)) ‖ ‖
l 6=i,j

ℏl(α1 . . . αk′ · (i, ch, v, j))

(by def. of ℏl)

=‖
l 6=j

ℏl(α1 . . . αk′+1) (simplify)
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Both indices i, j on RHS: When l /∈ {i, j} we have

∫−l(α1 . . . αk′ · (i, ch, v, j))

= ∫−l(α1 . . . αk′) · ∫−l(i, ch, v, j) (by def. of ∫−l)

∈


‖

m 6=l

ℏm(α1 . . . αk′)


 · ∫−l(i, ch, v, j) (by the IH, · monotone)

⊆


‖

m 6=l

ℏm(α1 . . . αk′)


 · (ch!v ‖ ch?v)

(by def. of ∫−l, ‖, · monotone)

⊆ ℏi(α1 . . . αk′) · ch!v ‖ ℏj(α1 . . . αk′) · ch?v ‖ ‖
m 6=i,j,l

ℏm(α1 . . . αk′)

(by Lemma 3)

= ℏi(α1 . . . αk′) · ch!v ‖ ℏj(α1 . . . αk′) · ch?v ‖ ‖
m 6=i,j,l

ℏm(α1 . . . αk′+1)

(by def. of ℏm)

=‖
m 6=l

ℏm(α1 . . . αk′+1) (simplify)

⊓⊔

B.5 Helper lemmas for history soundness (Lemma 15)

We first establish a couple of helper results:

Lemma 17 (ǫ in prefix). For all s, Ê i, X̂ i. ǫ ∈ L(p) where 〈p, c〉 = H(Ê i, X̂ i, s)

Proof. By structural induction on s. Let s, Ê i, X̂ i be given. In the cases skipℓ, x =ℓ e,

for bℓ { s }, selectℓ { a1 . . . an }, case x = <-ℓ ch: s, and case ch <-ℓ e: s
the result holds immediately from the definition of H. In the last two cases s1 ; s2 and

if bℓ { s1 } else { s2 } it follows immediately from the induction hypothesis on s1.

Lemma 18 (Terminal action is τ ). For all s, ρ, ρ′, α. If 〈s, ρ〉
α
−→ ρ′ then α = τ

Proof. By case analysis on the applied rule for 〈s, ρ〉
α
−→ ρ′. In the cases SKIP, AS-

SIGN, and FOR2 we immediately have α = τ as desired. The cases SEQ1, SEQ2, IF1,

IF2, FOR1, SELECT, READ, and WRITE can only transition to non-terminal configura-

tions and are therefore vacuously true.

Lemma 19 (ǫ in terminal action trace). For all s, ρ, ρ′, α, Ê , X̂ . If 〈s, ρ〉
α
−→ ρ′ and

Ê , X̂ � s then ǫ ∈ L(c) where 〈p, c〉 = H(Ê i, X̂ i, s).
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Proof. By the above lemma we have α = τ . We proceed by case analysis on the applied

rule for 〈s, ρ〉
α
−→ ρ′.

case SKIP: By definition 〈ǫ, ǫ〉 = H(Ê i, X̂ i, skipℓ) hence ǫ ∈ L(ǫ) as desired.

case ASSIGN: By definition 〈ǫ, ǫ〉 = H(Ê i, X̂ i, x =ℓ e) hence ǫ ∈ L(ǫ) as desired.

case FOR2: By definition 〈c∗ · p, c∗〉 = H(Ê i, X̂ i, for bℓ { s }) where 〈p, c〉 = H(Ê i, X̂ i, s).
hence ǫ ∈ L(c∗) as desired.

The cases SEQ1, SEQ2, IF1, IF2, FOR1, SELECT, READ, and WRITE can only transi-

tion to non-terminal configurations and are therefore vacuously true.

Lemma 20 (H records actions). For all s, s′, ρ, ρ′, α, Ê , X̂ . If 〈s, ρ〉
α
−→ 〈s′, ρ′〉,

Ê , X̂ � s, ρ ∈ γst(Ê iρ(first(s))), ρ
′ ∈ γst(Ê iρ(first(s

′))), and 〈p, c〉 = H(Ê i, X̂ i, s)

and 〈p′, c′〉 = H(Ê i, X̂ i, s′) then |α| · L(p′) ⊆ L(p) and |α| · L(c′) ⊆ L(c)

where we use an operation over single-process labels defined as follows:

|τ | = ǫ |α| = α for α 6= τ

Proof. By structural induction on s. We proceed by case analysis on the applied rule

for 〈s, ρ〉
α
−→ 〈s′, ρ′〉.

case SEQ1: We have H(Ê i, X̂ i, s1 ; s2) = 〈p1 + c1 · p2, c1 · c2〉 where 〈p1, c1〉 =

H(Ê i, X̂ i, s1) and 〈p2, c2〉 = H(Ê i, X̂ i, s2).

Furthermore since 〈s1, ρ〉
α
−→ 〈s3, ρ

′〉. we have |α| · L(p3) ⊆ L(p1) and |α| ·
L(c3) ⊆ L(c1) by the induction hypothesis. Hence |α|·L(p3 + (c3 · p2) + (c3 · c2)) ⊆
L(p1 + (c1 · p2) + (c1 · c2)) as desired.

case SEQ2: By the above lemma we have α = τ . Furthermore H(Ê i, X̂ i, s1 ; s2) =

〈p1 + c1 · p2, c1 · c2〉where 〈p1, c1〉 = H(Ê i, X̂ i, s1) and 〈p2, c2〉 = H(Ê i, X̂ i, s2).
and by the above lemma we have ǫ ∈ L(c1). Therefore since |τ | = ǫ we have

|τ | · L(p2) = L(p2) ⊆ L(p1 + c1 · p2) and |τ | · L(c2) = L(c2) ⊆ L(c1 · c2) as

desired.

case IF1: We have α = τ . Since H(Ê i, X̂ i, if ℓ { s } else { }) = 〈p1 + p2, c1 + c2〉

where 〈p1, c1〉 = H(Ê i, X̂ i, s1) and 〈p2, c2〉 = H(Ê i, X̂ i, s2) we therefore have

|τ | = ǫ and hence |τ | · L(p1) = L(p1) ⊆ L(p1 + p2) and |τ | · L(c1) = L(c1) ⊆
L(c1 + c2) as desired.

case IF2: Symmetric to IF2.

case FOR1: We have α = τ . SinceH(Ê i, X̂ i, for bℓ { s }) = 〈c∗ · p, c∗〉where 〈p, c〉 =

H(Ê i, X̂ i, s) and s′ = s; for bℓ { s } we thus have H(Ê i, X̂ i, s; for bℓ { s }) =
〈p+ (c · c∗ · p), c · c∗〉. Hence |τ | = ǫ and therefore |τ | · L(p+ (c · c∗ · p)) =
L(p+ (c · c∗ · p)) ⊆ L(c∗ · p) and |τ | · L(c · c∗) = L(c · c∗) ⊆ L(c∗) as desired.

case SELECT: We haveH(Ê i, X̂ i, selectℓ { a1 . . . an }) = 〈ǫ+
∑

j pj ,
∑

j cj〉where

〈pj , cj〉 = H(Ê i, X̂ i, aj) for 1 ≤ j ≤ n. Since 〈aj , ρ〉
α
−→ 〈s′, ρ′〉. by the in-

duction hypothesis we have |α| · L(p′) ⊆ L(pj) and |α| · L(c′) ⊆ L(cj) and

where 〈p′, c′〉 = H(Ê i, X̂ i, s′). But then |α| · L(p′) ⊆ L(pj) ⊆ L(ǫ+
∑

j pj) and

|α| · L(c′) ⊆ L(cj) ⊆ L(
∑

j cj) as desired.
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case READ: We haveH(Ê i, X̂ i, case x = <-ℓ ch: s) = 〈ǫ+ ch?v̂ + ch?v̂ · p, ch?v̂ · c〉.

where 〈p, c〉 = H(Ê i, X̂ i, s) and v̂ = Ê iρ(first(s))(x ).

By assumption ρ′ = ρ[x 7→ v] ∈ γst(Ê iρ(first(s))). Hence v ∈ γv(Ê iρ(first(s))(x ))
and therefore ch?v ∈ L(ch?v̂). But then we have |ch?v| · L(p) = ch?v · L(p) ⊆
L(ǫ+ ch?v̂ + ch?v̂ · p) and |ch?v| · L(c) = ch?v · L(c) ⊆ L(ch?v̂ · c) as desired.

case WRITE: We haveH(Ê i, X̂ i, case ch <-ℓ e: s) = 〈ǫ+ ch!v̂ + ch!v̂ · p, ch!v̂ · c〉.

where 〈p, c〉 = H(Ê i, X̂ i, s) and v̂ = Â(e, Ê iρ(ℓ)).
By Lemma 9 we have v ∈ γv(v̂) and therefore ch!v ∈ L(ch!v̂). But then |ch!v| ·
L(p) = ch!v · L(p) ⊆ L(ǫ+ ch!v̂ + ch!v̂ · p) and |ch!v| · L(c) = ch!v · L(c) ⊆
L(ch!v̂ · c) as desired.

The cases SKIP, ASSIGN, and FOR2 are vacuously true as they transition to a terminal

configuration.

B.6 History soundness (Lemma 15)

We now address the main history lemma.

Proof. By induction on the length of the trace. Let a program s1 : · · · : sn, stores

ρ1, . . . , ρn, a trace 〈s1, ρ1〉 . . . 〈sn, ρn〉
α1=⇒ . . .

αk=⇒ c′1 . . . c
′
n, 1 ≤ i ≤ n, and caches

Ê , X̂ be given such that ρi ∈ γst(Ê iρ(first(si))), ∫−i(α1 . . . αk) ∈ L(Ê if (first(si))), and

Ê , X̂ � si.

case k = 0: We have ℏi(ǫ) = ǫ. Furthermore we have ǫ ∈ L(pi) ⊆ L(pi + ci) for

〈pi, ci〉 = H(Ê i, X̂ i, si) by Lemma 17 above.

case k = k′ + 1: We have 〈s1, ρ1〉 . . . 〈sn, ρn〉
α1=⇒ 〈s′1, ρ

′
1〉 . . . 〈s

′
n, ρ

′
n〉 and by (the

generalization of) Theorem 12 we furthermore have ρ′i ∈ γst(Ê iρ(first(s
′
i))), ∫−i(α2 . . . αk) ∈

L(Ê if (first(s
′
i))), and Ê , X̂ � s′i. We proceed by case analysis on α1.

case α1 = 〈j, τ〉, j 6= i: We have si = s′i. ThereforeH(Ê i, X̂ i, si) = H(Ê i, X̂ i, s′i).
Furthermore ℏi(α1 . . . αk) = ℏi(α2 . . . αk) ∈ L(pi + ci) with 〈pi, ci〉 =

H(Ê i, X̂ i, si) = H(Ê i, X̂ i, s′i) by the induction hypothesis.

case α1 = 〈i, τ〉: If 〈si, ρi〉
τ
−→ ρ′: We immediately have ǫ ∈ L(p) where 〈p, c〉 =

H(Ê i, X̂ i, si) by Lemma 17 above.

Now assume ℏi(α2 . . . αk) 6= ǫ. Then some ℏi(αw) 6= ǫ which means αw =
(l, ch, v, j) with either l = i or j = i. But then there should exist a pro-

cess transition from ρ′ which is impossible. Hence we have ℏi(α1 . . . αk) =
ℏi(α2 . . . αk) = ǫ ∈ L(pi + ci) as desired.

If 〈si, ρi〉
τ
−→ 〈s′i, ρ

′〉we have ℏi(〈i, τ〉α2 . . . αk) = ℏi(α2 . . . αk) ∈ L(p
′
i + c′i)

with 〈p′i, c
′
i〉 = H(Ê

i, X̂ i, s′i) by the induction hypothesis. Hence by Lemma 20

above |τ |·L(p′i + c′i) = L(p
′
i + c′i) ⊆ L(pi + ci) and we conclude ℏi(α1 . . . αk) ∈

L(pi + ci) as desired.
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case α1 = l, ch, v, j for i /∈ {l, j}: We have si = s′i. Therefore H(Ê i, X̂ i, si) =

H(Ê i, X̂ i, s′i). Furthermore ℏi((l, ch, v, j)α2 . . . αk) = ℏi(α2 . . . αk) ∈ L(pi + ci)

with 〈pi, ci〉 = H(Ê i, X̂ i, si) = H(Ê i, X̂ i, s′i) by the induction hypothesis.

case α1 = i, ch, v, j: By rule SYSCOMM it must be the case that 〈si, ρ〉
ch!v
−→ 〈s′i, ρ

′〉

since if 〈si, ρ〉
ch!v
−→ ρ′ we would conclude ch!v = τ by Lemma 19 above and

reach a contradiction.

But then ℏi(i, ch, v, j) = ch!v and by Lemma 20 above we have |ch!v| ·
L(p′i) = ch!v ·L(p′i) ⊆ L(pi) and |ch!v| ·L(c′i) = ch!v ·L(c′i) ⊆ L(ci) where

〈p′i, c
′
i〉 = H(Ê

i, X̂ i, s′i). Furthermore, by the induction hypothesis ℏi(α2 . . . αk) ∈
L(p′i + c′i) hence ℏi(α1α2 . . . αk) = ch!vℏi(α2 . . . αk) ∈ ch!v · L(p′i + c′i) ⊆
L(pi + ci) as desired.

case α1 = l, ch, v, i: By rule SYSCOMM it must be the case that 〈si, ρ〉
ch?v
−→ 〈s′i, ρ

′〉

since if 〈si, ρ〉
ch?v
−→ ρ′ we would conclude ch?v = τ by Lemma 19 above and

reach a contradiction.

But then ℏi(l, ch, v, i) = ch?v and by Lemma 20 above we have |ch?v| ·
L(p′i) = ch?v ·L(p′i) ⊆ L(pi) and |ch?v|·L(c′i) = ch?v ·L(c′i) ⊆ L(ci) where

〈p′i, c
′
i〉 = H(Ê

i, X̂ i, s′i). Furthermore, by the induction hypothesis ℏi(α2 . . . αk) ∈
L(p′i + c′i) hence ℏi(α1α2 . . . αk) = ch?vℏi(α2 . . . αk) ∈ ch?v ·L(p′i + c′i) ⊆
L(pi + ci) as desired.
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