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Abstract

We present an iterated approach to statically analyze programs
of two processes communicating by message passing. Our anal-
ysis operates over a domain of lattice-valued regular expressions,
and computes increasingly better approximations of each process’s
communication behavior. Overall the work extends traditional
semantics-based program analysis techniques to automatically rea-
son about message passing in a manner that can simultaneously
analyze both values of variables as well as message order, message
content, and their interdependencies.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Languages, Theory, Verification

Keywords Process analysis, abstract interpretation, lattice-valued
regular expressions

1. Introduction

Today’s software increasingly depend on network communication,
as witnessed, e.g., by the popularity of applications for smartphones
and the web. This network communication can depend on intricate
protocol details, such as the order and the content of messages. To
this end we develop an ‘interaction analysis’: a static analysis that
infers (an approximation of) both the structure of interaction as well
as the content.

spawn proc1() { x = 1;
while (0 < x) { ch?x } }

spawn proc2() { y = 1000;
while (0 < y) { ch!y;

y = y-1; } }

Figure 1: An example program

Consider the program in Fig. 1. It consists of two processes
communicating by message passing. The first process proc1,
repeatedly reads an integer from a channel ch. A second pro-
cess proc2, writes a decreasing chain of integers to channel ch.
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Our analysis captures the interaction between the two processes
by means of lattice-valued regular expressions (Midtgaard et al.
2016). In doing so, it automatically infers

• (ch![1; 1000])∗ as a communication invariant for proc2 (here
expressed as a regular expression over intervals annotated with
channel names), meaning that proc2 repeatedly outputs an
integer value in the range [1; 1000] to the channel ch,

• that the loop of proc2 terminates with the value of y being
approximated by the interval [0; 0], and

• that the loop of proc1 does not terminate, since none of the
values received suffice to falsify its loop condition.

The contributions of this paper are

• a static interaction analysis for inferring both the communica-
tion structure and content of two message passing processes,

• an iterative algorithm for computing it,

• a prototype implementation of the approach, and

• a soundness proof of the developed analysis.

2. Lattice Theory and Abstract Interpretation

In this section we summarize the required background material
on lattice theory (Grätzer 1978; Davey and Priestley 2002) and
abstract interpretation (Cousot and Cousot 1977, 1992a) which the
rest of the paper builds on.

A lattice 〈L;⊑〉 is a partially ordered set where each pair of
elements ℓ, ℓ′ ∈ L has a least upper bound ℓ ⊔ ℓ′ and a greatest
lower bound ℓ⊓ ℓ′. A complete lattice 〈L;⊑〉 is a partially ordered
set where a least upper bound ⊔S and greatest lower bound ⊓S
exists for any subset of elements S ⊆ L. In particular this means
that L has a least element ⊥ = ⊓L = ⊔∅ (‘bottom’) and a greatest
element ⊤ = ⊔L = ⊓∅ (‘top’). A Moore family of a partially
ordered set 〈L;⊑〉 with⊤ ∈ L, is a subset S ⊆ L such that ⊤ ∈ S
and ⊓X ∈ S for any subset X ⊆ S.

A Galois connection 〈C;⊑〉 −−→←−−α
γ
〈A;≤〉 is a pair of functions

α : C −→ A and γ : A −→ C connecting two partially ordered
sets such that ∀a ∈ A, c ∈ C. α(c) ≤ a ⇐⇒ c ⊑ γ(a).
The latter is equivalent to requiring that α and γ are monotone
(∀c, c′ ∈ C. c ⊑ c′ =⇒ α(c) ≤ α(c′) and ∀a, a′ ∈ A. a ≤
a′ =⇒ γ(a) ⊑ γ(a′)), that α◦γ is reductive (∀a. (α◦γ)(a) ≤ a),
and that γ ◦α is extensive (∀c. c ⊑ (γ ◦α)(c)). A Galois insertion

〈C;⊑〉 −−→−→←−−−
α

γ

〈A;≤〉 is a Galois connection where α is surjective,

or equivalently (1) that γ is injective or (2) that α ◦ γ is the identity

function. When a Galois connection 〈C;⊑〉 −−→←−−α
γ
〈A;≤〉 connects

two complete lattices α is a complete join morphism, meaning that
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α(
⊔

i ℓi) =
∨

i α(ℓi) and γ is a complete meet morphism, meaning
that γ(

∧
i ℓi) =

d
i γ(ℓi).

An atom of a lattice 〈L;⊑〉 is an element a ∈ L such that
if another element ℓ ∈ L satisfies ⊥ ⊑ ℓ ⊑ a then ℓ = ⊥ or
ℓ = a. We write Atoms(L) for the set of L’s atom elements and
let variables a, a′ range over these. An atomic lattice is a lattice
〈L;⊑〉 where for any non-bottom element ℓ ∈ L there exists an
atom a ∈ Atoms(L) such that a ⊑ ℓ. An atomistic lattice is a
lattice where for any non-bottom element ℓ ∈ L there exists a set
of atoms Sℓ ⊆ Atoms(L) such that ℓ = ⊔Sℓ. An atomistic Galois
insertion is a Galois insertion connecting two atomistic lattices,
such that α : Atoms(C) −→ Atoms(A) is surjective, i.e., α
maps atoms to atoms and for all a ∈ Atoms(A) there exists an
atom c ∈ Atoms(C) such that α(c) = a.

A fixed point of a function F : L −→ L is an element ℓ ∈ L
such that F (ℓ) = ℓ. A post-fixed point of F is an element ℓ ∈ L
such that F (ℓ) ⊑ ℓ.1 Tarski’s fixed point theorem says that for a
complete lattice 〈L;⊑〉 and a monotone function F : L −→ L the
fixed points of F themselves form a complete lattice, i.e., the set of
fixed points is non-empty, and in particular there exists a least fixed
point lfpF and a greatest fixed point gfpF .

In classical abstract interpretation (“the Galois connection
framework”) the fixed point transfer theorem ties together a Ga-

lois connection 〈C;⊑〉 −−→←−−α
γ
〈A;≤〉, two monotone functions

F : C −→ C, F̂ : A −→ A, and least fixed points lfpF ,

lfp(α◦F ◦γ), and lfp F̂ by concluding that if F̂ over-approximates

α ◦ F ◦ γ (∀a ∈ A. (α ◦ F ◦ γ)(a) ≤ F̂ (a)) then we can
over-approximate a fixed point of F by any monotone over-

approximation of α ◦ F ◦ γ: α(lfpF ) ≤ lfp(α ◦ F ◦ γ) ≤ lfp F̂ .
If 〈A;≤〉 satisfies the ascending chain condition (ACC) mean-

ing that all strictly increasing chains have finite length, then we

can compute lfp F̂ by Kleene iteration as the limit of ⊥ =
F̂ 0(⊥), F̂ 1(⊥), F̂ 2(⊥), . . . If 〈A;≤〉 does not satisfy the ACC
(or if it takes too long to compute the above), then we can over-

approximate lfp F̂ further by computing an iteration with widen-
ing. The alternative iteration sequence is computed as ℓ0 =

⊥, ℓ1 = ℓ0 ▽ F̂ (ℓ0), ℓ2 = ℓ1 ▽ F̂ (ℓ1), . . . where the widen-
ing operator ▽ : A −→ A −→ A is defined as follows:

Definition 2.1 (Widening). A widening operator satisfies

1. ∀ℓ, ℓ′ ∈ A. ℓ ⊑ ℓ▽ ℓ′ ∧ ℓ′ ⊑ ℓ▽ ℓ′

2. for all increasing chains ℓ0 ⊑ ℓ1 ⊑ ℓ2 ⊑ . . . the alternative
chain defined as x0 = ℓ0 and xk+1 = xk ▽ ℓk+1 stabilizes
after a finite number of steps.

There are multiple definitions of widening in the literature. The
definition given above is a common one (Cousot and Cousot 1992b;
Halbwachs 1993; Nielson et al. 1999). 2

To improve upon a post-fixed point ℓpost , e.g., found by the
above iteration, one can compute a second iteration with narrowing

ℓ′0 = ℓpost , ℓ′1 = ℓ′0 △ F̂ (ℓ′0), ℓ′2 = ℓ′1 △ F̂ (ℓ′1), . . . where the
narrowing operator △ : A −→ A −→ A is defined as follows:

Definition 2.2 (Narrowing). A narrowing operator satisfies

1 Note: Here the abstract interpretation literature (Cousot 1981; Cousot and
Cousot 1992a) deviates from other literature (Davey and Priestley 2002;
Sangiorgi 2009) where the above would be called a ‘pre-fixed point’.
2 Cousot and Cousot (1976, 1977) initially state the first requirement as
∀ℓ, ℓ′ ∈ A. ℓ ⊔ ℓ′ ⊑ ℓ▽ ℓ′ which is equivalent to the above over a lattice
structure with (binary) least upper bounds. Both Cousot and Cousot (1976,
1977) and the definition recalled by Monniaux (2009) strengthen the last
requirement to hold for any sequence ℓ0, ℓ1, ℓ2, . . . (regardless of order).
Both Cousot and Cousot (1992a) and Cousot (2015) further adjust the above
requirements.

E ∋ e ::= n | x | ? | e1 + e2 | e1 − e2

B ∋ b ::= tt | ff | x1 < x2

S ∋ s ::= skip
ℓ | x :=ℓe | s1 ; s2 | if bℓ then s1 else s2

| while bℓ do s1 end | s1 ⊕
ℓ s2 | ch?

ℓx | ch!ℓe | stopℓ

P ∋ p ::= s1 ‖ s2

Figure 2: BNF syntax of the process language

1. ∀ℓ, ℓ′ ∈ A. ℓ′ ⊑ ℓ =⇒ ℓ′ ⊑ (ℓ△ ℓ′) ⊑ ℓ
2. for all decreasing chains ℓ0 ⊒ ℓ1 ⊒ ℓ2 ⊒ . . . the alternative

chain defined as x0 = ℓ0 and xk+1 = xk △ ℓk+1 stabilizes
after a finite number of steps.

A post-fixed point of an operator F̂ : L −→ L typically
represents a conservative static analysis answer. As such, rather

than specifying an analysis as an explicit functional F̂ over a lattice
structure, one may instead give a specification of a post-fixed point

(an ‘acceptability relation’ F̂ (ℓ) ⊑ ℓ), thereby decoupling the
specification of valid analysis answers from the means used to
compute them. Both the syntax-directed flow logic (Nielson and
Nielson 2002) and constraint-based analyses (Aiken 1999) share
this approach.

3. Language

Our starting point is a core imperative language with sequencing,
conditionals, and while loops as outlined in Fig. 2. The core lan-
guage is structured into three syntactic categories of arithmetic ex-
pressions (e), Boolean expressions (b), and statements (s). For pre-
sentational purposes we keep the arithmetic and Boolean expres-
sions minimal. The statements of the core language have been ex-
tended with primitives for non-deterministic choice (⊕), for read-
ing and writing messages from/to a named channel (ch?x and
ch!e), and for terminating a process (stop). The two message pass-
ing primitives are synchronous. To build systems of communicating
processes, we extend the language further with a syntactic category
of programs (p), consisting of a pair of processes. To later state
and prove soundness of our analysis all basic actions (basic state-
ments or branch points in a corresponding flow graph) of the lan-
guage have been labeled with labels ℓ drawn from a set Labels to
distinguish multiple occurrences of syntactically identical entities,
e.g., skip1 and skip

2. We assume that initially no two actions are
labeled with the same label (during statement rewriting in the fol-
lowing SOS, we may duplicate sub-statements and hence encounter
some label overlapping).

We provide an operational semantics for the language in Fig. 3.
Following the syntactic structure of the language, it is formulated as
two big-step evaluation relations for (non-deterministically) evalu-
ating arithmetic expressions and Boolean expressions in a given
store, and two small-step evaluation relations −→ and =⇒ for ex-
ecuting statements and programs, respectively. The big-step evalu-
ation relations of the arithmetic expressions and Boolean expres-
sions are standard, with the exception of the arithmetic expres-
sion ‘?’. By the rule ANY in Fig. 3. such an arithmetic expres-
sion can evaluate to any value v. As traditional, communication
between processes is modeled by labels on the transitions: the tran-

sition
ch?v
−→ signals a message read of a value v,

ch!v
−→ signals a mes-

sage write of a value v, and τ signals absence of a communica-
tion event (a process-local computation step). The label α stands
for any (potentially absent) communication event. A choice state-
ment can non-deterministically execute either its left-hand or right-
hand statement depending on the available communication events.
A stop-statement on the other hand halts the enclosing process: by
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ρ ⊢A n ⇓ n
LIT

ρ ⊢A x ⇓ ρ(x)
VAR

ρ ⊢A ? ⇓ v
ANY

ρ ⊢A e1 ⇓ v1 ρ ⊢A e2 ⇓ v2

ρ ⊢A e1 + e2 ⇓ v1 + v2
ADD

ρ ⊢A e1 ⇓ v1 ρ ⊢A e2 ⇓ v2

ρ ⊢A e1 − e2 ⇓ v1 − v2
SUB

ρ ⊢B tt ⇓ tt
TRUE

ρ ⊢B ff ⇓ ff
FALSE

ρ(x1) < ρ(x2)

ρ ⊢B x1 < x2 ⇓ tt
LESSTHAN1

ρ(x1) ≥ ρ(x2)

ρ ⊢B x1 < x2 ⇓ ff
LESSTHAN2

〈skipℓ, ρ〉
τ
−→ ρ

SKIP
ρ ⊢A e ⇓ v

〈x :=ℓe, ρ〉
τ
−→ ρ[x 7→ v]

ASSIGN

〈s1, ρ〉
α
−→ 〈s3, ρ

′〉

〈s1 ; s2, ρ〉
α
−→ 〈s3 ; s2, ρ

′〉
SEQ1

〈s1, ρ〉
α
−→ ρ′

〈s1 ; s2, ρ〉
α
−→ 〈s2, ρ

′〉
SEQ2

ρ ⊢B b ⇓ tt

〈if bℓ then s1 else s2, ρ〉
τ
−→ 〈s1, ρ〉

IF1

ρ ⊢B b ⇓ ff

〈if bℓ then s1 else s2, ρ〉
τ
−→ 〈s2, ρ〉

IF2

ρ ⊢B b ⇓ tt

〈while bℓ do s1 end, ρ〉
τ
−→ 〈s1 ; while bℓ do s1 end, ρ〉

WHILE1

ρ ⊢B b ⇓ ff

〈while bℓ do s1 end, ρ〉
τ
−→ ρ

WHILE2

〈ch?ℓx , ρ〉
ch?v
−→ ρ[x 7→ v]

READ
ρ ⊢A e ⇓ v

〈ch!ℓe, ρ〉
ch!v
−→ ρ

WRITE

〈s1, ρ〉
α
−→ c1

〈s1 ⊕
ℓ s2, ρ〉

α
−→ c1

CHOICE1
〈s2, ρ〉

α
−→ c2

〈s1 ⊕
ℓ s2, ρ〉

α
−→ c2

CHOICE2

〈s1, ρ1〉
τ
−→ c′1

〈s1, ρ1〉 ‖ c2
τ,ǫ
=⇒ c′1 ‖ c2

SYSLEFT

〈s2, ρ2〉
τ
−→ c′2

c1 ‖ 〈s2, ρ2〉
ǫ,τ
=⇒ c1 ‖ c

′
2

SYSRIGHT

〈s1, ρ1〉
ch!v
−→ c′1 〈s2, ρ2〉

ch?v
−→ c′2

〈s1, ρ1〉 ‖ 〈s2, ρ2〉
ch!v,ch?v

=⇒ c′1 ‖ c
′
2

SYSWR

〈s1, ρ1〉
ch?v
−→ c′1 〈s2, ρ2〉

ch!v
−→ c′2

〈s1, ρ1〉 ‖ 〈s2, ρ2〉
ch?v,ch!v

=⇒ c′1 ‖ c
′
2

SYSRW

Figure 3: Operational semantics of the process language

omitting an explicit stop-rule from the semantics we model that
such statements cannot continue execution.

In the four rules for system (or program) steps we annotate the
arrow =⇒ with a pair of events from each process. In SYSWR

for example,
ch!v,ch?v
=⇒ expresses that the first process takes a step

writing a value v to channel ch and that the second process reads v

L(∅) = ∅

L(ǫ) = {ǫ}

L(ℓ) = {c | c ∈ γ(ℓ)}

L(r1 · r2) = L(r1) · L(r2)

L(r∗) = ∪i≥0 L(r)
i

L(∁ r) = ℘(C∗) \ L(r)

L(r1 + r2) = L(r1) ∪ L(r2)

L(r1 & r2) = L(r1) ∩ L(r2)

Figure 4: Denotation of LREs: L : R̂A −→ ℘(C∗)

from ch. In the rules SYSLEFT and SYSRIGHT where only one of
the two processes takes a step, we use an ǫ to indicate that the other

process takes no computation step. For example, in SYSLEFT
τ,ǫ
=⇒

indicates that the first process takes a τ step (no communication)
while the second process performs no computation. Finally the
system has no shared state: A process is limited to its own private
store ρ.

Based on the operational semantics we can now characterize a
system-level computation as a trace:

〈c1, c
′
1〉

α1,α
′
1=⇒ 〈c2, c

′
2〉

α2,α
′
2=⇒ 〈c3, c

′
3〉

α3,α
′
3=⇒ . . .

αn−1,α
′
n−1

=⇒ 〈cn, c
′
n〉

where each configuration ci (and c′i) is either a pair 〈s, ρ〉 or a final
configuration ρ. Intuitively for, e.g., c3 = 〈s3, ρ3〉 the string α1α2

represents the history of the first process’s communication after two
computation steps, whereas the string α′

3 . . . α
′
n−1 represents the

future communication of the environment (the second process). As
illustrated by our introductory example the analysis will approxi-
mate such strings by lattice-valued regular expressions.

4. Analysis

In this section we recall the domain of lattice-valued regular ex-
pressions and then develop the analysis based on this domain.

4.1 Lattice-valued regular expressions

Lattice-valued regular expressions (LREs) is a parametric abstract
domain capable of expressing both values (ranging over a given
lattice) as well as order, choice, and iteration of events (Midtgaard

et al. 2016). Given a Galois insertion 〈℘(C);⊆〉 −−→−→←−−−
α

γ

〈A;⊑〉
connecting an abstract domain A to some set of concrete charac-
ters where we furthermore require that α : Atoms(℘(C)) −→
Atoms(A), we can define the A-valued LREs as follows.

R̂A ::= ∅ | ǫ | ℓ | R̂A · R̂A | R̂
∗
A | ∁ R̂A | R̂A + R̂A | R̂A & R̂A

Based on the concretization function γ we recall in Fig. 4 the
denotation of LREs. Note how the concretization of a single ℓ ∈ A
results in a set of one-element strings over C. Our assumptions have
a number of consequences: in particular the abstract domain A in-
herits structure of ℘(C): it is also a complete, atomic, and atomistic
lattice. In addition it follows that γ is strict, α : Atoms(℘(C)) −→
Atoms(A) is surjective, and that atoms have no overlapping mean-
ing: a 6= a′ =⇒ γ(a) ∩ γ(a′) = ∅ (Midtgaard et al. 2016). As

a consequence 〈℘(C);⊆〉 −−→−→←−−−
α

γ
〈A;⊑〉 is an atomistic Galois

insertion.
LREs are ordered by the language inclusion ordering: r ⊏∼

r′ ⇐⇒ L(r) ⊆ L(r′). This ordering however only constitutes
a pre-order, as it is not anti-symmetric: e.g., ∅ and odd & even
are ordered both ways (their denotation is ∅) but they are not
syntactically identical: ∅ 6= odd & even . For this reason we can
consider LREs up to language equivalence to regain a partial order,

R̂A/≈. The resulting quotient set constitutes a lattice structure,
with binary least upper bounds + and greatest lower bounds &.
It follows from the definition of L that, e.g., concatenation · is
monotone in both arguments.

As a fundamental operation over the LREs, we consider the
Brzozowski derivative (Brzozowski 1964) defined in Fig. 5. Just as

3



D̂a(∅) = ∅

D̂a(ǫ) = ∅

D̂a(ℓ) =

{
ǫ a ⊑ ℓ

∅ a 6⊑ ℓ

D̂a(r
∗) = D̂a(r) · r

∗

D̂a(r1 · r2) =

{
D̂a(r1) · r2 + D̂a(r2) ǫ ⊏∼ r1

D̂a(r1) · r2 ǫ 6⊏∼ r1

D̂a(∁ r) = ∁ D̂a(r)

D̂a(r1 + r2) = D̂a(r1) + D̂a(r2)

D̂a(r1 & r2) = D̂a(r1)& D̂a(r2)

Figure 5: Brzozowski derivative D̂ : R̂A −→ Atoms(A) −→ R̂A

of LREs

r̂ange(∅) = ̂to_equivs (⊤)

r̂ange(ǫ) = ̂to_equivs (⊤)

r̂ange(ℓ) = ̂to_equivs (ℓ)

r̂ange(r∗) = r̂ange(r)

r̂ange(r1 · r2) =

{
̂overlay (r̂ange(r1), r̂ange(r2)) ǫ ⊑ r1

r̂ange(r1) ǫ 6⊑ r1

r̂ange(∁ r) = r̂ange(r)

r̂ange(r1 + r2) = ̂overlay (r̂ange(r1), r̂ange(r2))

r̂ange(r1 & r2) = ̂overlay (r̂ange(r1), r̂ange(r2))

Figure 6: Partition function r̂ange : R̂A −→ êquivA of LREs

in a plain Brzozowski derivative, the lattice-valued generalization
computes a new LRE, representing the language that remains after
having matched an atom a as the first character:

Lemma 4.1 (Meaning of derivatives (Midtgaard et al. 2016)).

∀a ∈ Atoms(A), r ∈ R̂A.

L(D̂a(r)) = {w | ∀c ∈ γ(a). cw ∈ L(r)}

4.2 Partitioning atoms

A partition P of a set S is a non-empty set of subsets P ⊂ ℘(S),
such that (1) the equivalence classes (or blocks) are non-empty
∀X ∈ P. X 6= ∅, (2) any two equivalence classes have nothing
in common (X,Y ∈ P. X 6= Y =⇒ X ∩ Y = ∅), and
(3) the equivalence classes collectively span all of S (∪P = S).
We formulate in Fig. 6 a generic partition function r̂ange , that

for a given r ∈ R̂A partitions Atoms(A) into equivalence classes
such that two atoms a, a′ belong to the same equivalence class if

D̂a(r) = D̂a′(r) and write êquivA for the type of atom partitions.
The partition function r̂ange is in turn based on the ability to
partition A’s atoms, which we phrase in terms of two primitives

̂to_equivs : A −→ êquivA

̂overlay : êquivA −→ êquivA −→ êquivA

of which the former should return a partition of a given lattice-
valued literal ℓ ∈ A and the latter should refine two partitions
into a third partition, finer than both its arguments. Partitions
form a lattice ordered by refinement (Grätzer 1978). As such,
̂to_equivs (⊤) returns the partition that identifies all atoms (top

of the partition lattice) and ̂overlay computes a lower bound (an
under-approximation of the greatest lower bound). We can thus
instantiate r̂ange to partition, e.g., interval-valued regular expres-
sions or parity-valued regular expressions by a suitable parameter-

ization of ̂to_equivs and ̂overlay .
Finally we require two additional operations

r̂epr : (℘(Atoms(A))\{∅}) −→ Atoms(A)

p̂roject : (℘(Atoms(A))\{∅}) −→ A

which both accept an equivalence class [a] from a partition of
Atoms(A). Specifically we require that r̂epr([a′]) returns an el-
ement a ∈ Atoms(A) in its argument equivalence class (a ∈ [a′])

and we require that p̂roject([a′]) returns an element in A that ac-
counts for all atoms a in its argument equivalence class: ∀a ∈

[a′]. a ⊑ p̂roject([a′]) and that p̂roject is monotone.

Partitioning Interval Atoms Intervals over integers Interval =
{[l; u] | l ≤ u ∧ l ∈ Z∪{−∞} ∧ u ∈ Z∪{+∞}}∪{⊥} form
a complete lattice when ordered under interval inclusion (Cousot
and Cousot 1976) with a Galois insertion:

〈℘(Z);⊆〉 −−−−→−→←−−−−−
αInt

γInt
〈Interval ;⊑〉 where

αInt(S) =

{
⊥ S=∅

[inf S; supS] S 6=∅

γInt(⊥) = ∅

γInt([l;u]) = {i | l≤ i≤u}

In this domain the atoms are the unit intervals: Atoms(Interval) =
{[i; i] | i ∈ Z}. We can furthermore partition the atoms (the unit
intervals) by representing the equivalence classes as a set of non-
overlapping, non-empty intervals that collectively span the entire

domain: êquiv Interval = ℘(Interval \ {⊥}).

Fig. 7 defines ̂to_equivs and ̂overlay for the interval domain.

For example, ̂to_equivs ([1; 5]) returns a partition consisting of
three equivalence classes {[−∞; 0], [1; 5], [6; +∞]}. We can com-
bine this partition with another partition {[−∞; 2], [3; +∞]} us-

ing ̂overlay , such that the result {[−∞; 0], [1; 2], [3; 5], [6; +∞]}
is a partition which is a refinement of both arguments. For an
equivalence class (represented as a non-bottom interval) we can
now let r̂epr return a unit interval less than its argument, e.g.,

r̂epr([6; +∞]) = [6; 6], whereas p̂roject can be defined as the

identity function p̂roject([l;u]) = [l; u] since non-bottom inter-
vals (as equivalence classes) already act as elements of the interval
domain. The latter definition is clearly monotone over the sets-of-
atoms and interval orderings.

Partitioning Cartesian Product Atoms In static analysis there are
multiple ways to form product lattices, e.g., as Cartesian prod-
ucts L1 × L2 ordered componentwise. For abstractions defined by
a Galois insertion with a strict γ, this implicitly means that the
atoms of L1 × L2 are of the shape 〈ℓ1,⊥〉 ∈ Atoms(L1) ×
L2 and 〈⊥, ℓ2〉 ∈ L1 × Atoms(L2). Hence we can partition

Atoms(L1 × L2) with a pair êquivL1
× êquivL2

where the first

component partitions {⊥} × Atoms(L2) and the second compo-
nent partitions Atoms(L1)×{⊥}. As a consequence we can com-
positionally write

̂to_equivs (ℓ1, ℓ2)=( ̂to_equivsL1
(ℓ1), ̂to_equivsL2

(ℓ2))

̂overlay ((P1,P2),(P
′
1,P

′
2))=( ̂overlayL1

(P1,P
′
1), ̂overlayL2

(P2,P
′
2))

where P1, P
′
1 range over partitions of Atoms(L1) and P2, P

′
2

range over partitions of Atoms(L2). Given a single equivalence
class in (Atoms(L1)×{⊥})∪({⊥}×Atoms(L2)) it will belong
to either of the two sets of the disjoint union. The definitions of
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̂to_equivs ([l;u]) =





[−∞;+∞] l=−∞∧ u=+∞

[−∞;u], [u+ 1;+∞] l=−∞∧ u 6=+∞

[−∞; l − 1], [l;+∞] l 6=−∞∧ u=+∞

[−∞; l − 1], [l;u], [u+ 1;+∞] l 6=−∞∧ u 6=+∞

̂overlay ([l1; +∞], [l2; +∞]) = [l1; +∞] l1 = l2 holds as an invariant

̂overlay ([l1; u1] ::R
′
1, [l2;u2] ::R

′
2) =





[l1; u1] :: ̂overlay (R′
1, R

′
2) l1= l2 ∧ u1=u2

[l1; u1] :: ̂overlay (R′
1, [u1 + 1; u2] ::R′

2) l1= l2 ∧ u1<u2

[l2; u2] :: ̂overlay ([u2 + 1; u1] ::R′
1, R

′
2) l1= l2 ∧ u1>u2

Figure 7: ̂to_equivs and ̂overlay for the interval domain

r̂epr and p̂roject therefore both dispatch:

r̂epr([a]1) = (r̂eprL1
([a]),⊥)

r̂epr([a]2) = (⊥, r̂eprL2
([a]))

p̂roject([a]1) = (p̂rojectL1
([a]),⊥)

p̂roject([a]2) = (⊥, p̂rojectL2
([a]))

Again this definition of p̂roject is monotone under the sets-of-
atoms and componentwise ordering when composed from mono-

tone definitions of p̂roject for L1 and L2.

Partitioning Reduced/Smash Product Atoms An alternative
form of lattice product often found in static analysis is the reduced
or smash products L1 ∗ L2 = ((L1 \ {⊥})× (L2 \ {⊥})) ∪ {⊥}
again ordered componentwise with the added ⊥ being less than
all other elements. For this domain the atoms are a combina-
tion of atoms from each of L1 and L2: Atoms(L1 ∗ L2) =
Atoms(L1)×Atoms(L2). There are several ways to partition this

set of atoms. One is by using a pair of partitions êquivL1
×êquivL2

.

We define ̂to_equivsL1∗L2
and ̂overlayL1∗L2

as in Cartesian prod-

ucts. Similarly r̂epr and p̂roject are defined compositionally:

r̂epr([a1], [a2]) = (r̂eprL1
([a1]), r̂eprL2

([a2]))

p̂roject([a1], [a2]) = (p̂rojectL1
([a1]), p̂rojectL2

([a2]))

Again the above definition of p̂roject is monotone under the
sets-of-atoms and componentwise ordering when composed from

monotone definitions of p̂roject for L1 and L2.
Alternatively one can partition Atoms(L1 ∗ L2) using a func-

tion space: (℘(Atoms(L1)) \ {∅}) −→ êquivL2
(or vice versa).

Such a representation allows us to partition pairs with, e.g., first
component [1; 5] independently of the other first components, e.g.,
[−∞; 0] and [6; +∞], thereby potentially leading to a coarser prod-
uct partition.

With the LREs in place, we now turn to the static analysis.

4.3 The analysis proper

The basic idea of the analysis is to extend a base analysis (that
approximates stores) for the core imperative language with two ad-
ditional components: futures and histories. Futures (ranged over by

f̂ ) are consumed by the analysis and describe what network com-
munication the environment offers, whereas histories (ranged over

by ĥ) are produced by the analysis as an instrumented (approxi-
mate) trace of network communication of the process in question.
Both futures and histories are expressed as LREs.

The analysis works for a generic value domain V̂al that is

• defined as a Galois insertion 〈℘(Val);⊆〉 −−−→−→←−−−−
αv

γv
〈V̂al ;⊑〉,

with a strict γv

• connecting complete lattices, and

• with sound, monotone over-approximations of the arithmetic
operators: +̂ of + and −̂ of −.

These requirements are easily satisfied by a range of standard lat-
tices, such as parity, sign, constant propagation, and interval. To
approximate a set of stores (partial functions Var →֒ Val) the

analysis uses a lifted function space Ŝtore = (Var −→ V̂al)⊥
and we let ρ̂ range over these. The lifting lets us distinguish the
empty store λx .⊥v from an unreachable program point⊥. Assum-
ing channels have been numbered (for simplicity in the formalism
we assume ch is a number), the analysis uses two reduced product

domains Interval ∗V̂al for characterizing reads and writes, respec-
tively. Their Cartesian product then captures both reads and writes:

Ĉh(V̂al) = (Interval ∗ V̂al)× (Interval ∗ V̂al). The futures and

histories now range over Ĉh(V̂al)-valued regular expressions.
To ease the manipulation of labeled statements we make use

of two auxiliary functions defined in Fig. 8: first for fetching the
label of the first statement of a potentially composite statement and
last for fetching the labels of the last statements of a potentially
composite statement. The alert reader may wonder why first just
returns a single label in the presence of the non-deterministic ⊕-
construct. The reason is that the label ℓ in s1 ⊕

ℓ s2 represents the
first, implicit action (a non-deterministic choice) of either executing
the left or the right branch, corresponding to a branch-node in a
flow graph. On the other hand, the last statement executed of, e.g.,
s1 ⊕

ℓs2 may be in either s1 or s2, hence last returns a set of labels.
In addition the analysis utilizes the following auxiliary functions:

• Â : E −→ Ŝtore −→ V̂al for analyzing arithmetic expres-
sions,

• âssign : Ŝtore × Var × V̂al −→ Ŝtore for modeling assign-
ment over abstract stores, and

• two ‘filter functions’

t̂rue : B −→ Ŝtore −→ Ŝtore

f̂alse : B −→ Ŝtore −→ Ŝtore

for picking up precision from comparisons in Boolean expres-
sions.

The definition of Â in Fig. 8 is generic—it works for any value
abstraction satisfying the above requirements. Similarly Fig.9

presents a generic definition of filter functions t̂rue and f̂alse .
These definitions will work equally well over, e.g., the parity lat-
tice and the interval lattice, but they will not allow the analysis
to pick up additional information from conditions in if-statements
and while-loops. Alternatively Fig. 10 phrases domain-specific def-

initions of t̂rue and f̂alse for the interval lattice. For example, if
we know that x ∈ [3; 10] and y ∈ [2; 8] in an abstract store ρ̂,

t̂rue(x < y , ρ̂) = ρ̂[x 7→ [3; 7], y 7→ [4; 8]] which models that x
can be at most 7 and that y will be at least 4 for the comparison
x < y to evaluate to true.

The analysis is formulated in Fig. 11 as a syntax-directed spec-
ification over labeled statements that associates to each label ℓ an
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first : Stmt −→ Labels

first(skipℓ) = ℓ

first(x :=ℓe) = ℓ

first(s1 ; s2) = first(s1)

first(if bℓ then s1 else s2) = ℓ

first(while bℓ do s1 end) = ℓ

first(s1 ⊕
ℓ s2) = ℓ

first(ch?ℓx) = ℓ

first(ch!ℓe) = ℓ

first(stopℓ) = ℓ

last : Stmt −→ ℘(Labels)

last(skipℓ) = {ℓ}

last(x :=ℓe) = {ℓ}

last(s1 ; s2) = last(s2)

last(if bℓ then s1 else s2) = last(s1) ∪ last(s2)

last(while bℓ do s1 end) = {ℓ}

last(s1 ⊕
ℓ s2) = last(s1) ∪ last(s2)

last(ch?ℓx) = {ℓ}

last(ch!ℓe) = {ℓ}

last(stopℓ) = {ℓ}

Â : E −→ Ŝtore −→ V̂al

Â(n, ρ̂) = αv({n})

Â(x , ρ̂) =

{
⊥ ρ̂ = ⊥

ρ̂(x) ρ̂ 6= ⊥

Â(?, ρ̂) = ⊤

Â(e1 + e2, ρ̂) = Â(e1, ρ̂) +̂ Â(e2, ρ̂)

Â(e1 − e2, ρ̂) = Â(e1, ρ̂) −̂ Â(e2, ρ̂)

âssign : Ŝtore × Var × V̂al −→ Ŝtore

âssign(ρ̂, x , v̂) =

{
⊥ ρ̂ = ⊥

ρ̂[x 7→ v̂] ρ̂ 6= ⊥

Figure 8: Auxiliary functions first , last , Â, and âssign

t̂rue(tt, ρ̂) = ρ̂

t̂rue(ff, ρ̂) = ⊥

t̂rue(x1 < x2, ρ̂) =





⊥ if ρ̂ = ⊥∨ ρ̂(x1) = ⊥∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l1; u
′
1], x2 7→ [l′2;u2]]

if ρ̂(xi) = [li;ui], i ∈ {1, 2}

where u′
1 = minu1(u2 − 1)

l′2 = max(l1 + 1)l2

f̂alse(tt, ρ̂) = ⊥

f̂alse(ff, ρ̂) = ρ̂

f̂alse(x1 < x2, ρ̂) =





⊥ if ρ̂ = ⊥ ∨ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l′1;u1], x2 7→ [l2;u
′
2]]

if ρ̂(xi) = [li;ui], i ∈ {1, 2}

where l′1 = max l1l2

u′
2 = minu1u2

Figure 10: Definitions of t̂rue and f̂alse for the interval lattice

t̂rue(tt, ρ̂) = f̂alse(ff, ρ̂) = ρ̂

t̂rue(ff, ρ̂) = f̂alse(tt, ρ̂) = ⊥

t̂rue(x1 < x2, ρ̂) = f̂alse(x1 < x2, ρ̂)

=

{
⊥ if ρ̂ = ⊥ ∨ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂ otherwise

Figure 9: Generic definitions of t̂rue and f̂alse

abstract store, a history, and a future collected in a triple (ρ̂, ĥ, f̂).

The specification uses two maps Ê (for entry) and X̂ (for exit) to

associate such a triple as a precondition available in Ê (ℓ) and as a

postcondition available in X̂ (ℓ). For the rest of the article we will

sometimes use the shorthand notation Êρ(ℓ), Êh(ℓ), Êf (ℓ) for the

projection of each of the three components (ρ̂, ĥ, f̂) of Ê (ℓ) and

similarly for X̂ .
With the above auxiliary functions in mind the cases for skip, as-

signment, sequencing, conditionals, and while-loops are relatively
standard. For example, the sequencing rule passes the output (the
postcondition) of the last statement of s1 to the input (the pre-
condition) of the first statement of s2. Similarly, the conditional

rule passes the abstract stores flowing into Ê (ℓ) through the filter

functions t̂rue and f̂alse , thereby limiting the flow of stores into
each branch. The rule for non-deterministic choice simply prop-
agates flow from the entry (the precondition) to each branch and
joins them together at the exit (the postcondition). The rule for
stop

ℓ captures that no stores can occur after halting. Since none

of these constructs involve network communication, ĥ and f̂ are
passed around unmodified.

In the two cases for network communication we use the short-
hand notation [ch!va] and [ch?va] to denote equivalence classes
[〈(⊥,⊥), ([ch; ch], [va; va])〉] and [〈([ch; ch], [va; va]), (⊥,⊥)〉]

over atom writes and atom reads in Ĉh(V̂al), respectively. In the
read rule we first utilize r̂ange to compute a partition into equiva-
lence classes. For each equivalence class we then

• use a projection of the equivalence class to obtain an approxi-
mation of the values v̂ that can flow into the store at entry x ,

• record in the history that a network read took place, and

• use a representative to derive a new future from the old f̂ .

The write rule is similar, except we only propagate flow when the
abstract value v̂′ being written and the abstract value expected to
be read by the environment v̂ may have concrete values in common
(a non-bottom meet).

The basic analysis given Fig. 11, analyzes a single process

against a given future f̂ . As such, it works for analyzing individual

processes against a network environment policy given by f̂ . We
will then in Sec. 5 develop algorithms that iterate this ‘intra-process
analysis’ to analyze two-process programs.

5. The Analysis Algorithm

In this section we consider the algorithmic aspects of computing
analysis solutions. In particular we consider widening operators re-
quired to ensure termination, we describe an intra-process analy-
sis algorithm, we develop two analysis algorithms that iterate the
intra-process analysis to propagate analysis information between
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Ê , X̂ � skip
ℓ iff Ê (ℓ) ⊑ X̂ (ℓ)

Ê , X̂ � x :=ℓe iff (âssign(ρ̂, x , Â(e, ρ̂)), ĥ, f̂) ⊑ X̂ (ℓ) where (ρ̂, ĥ, f̂) = Ê (ℓ)

Ê , X̂ � s1 ; s2 iff Ê , X̂ � s1 ∧ Ê , X̂ � s2 ∧ ∀ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ Ê (first(s2))

Ê , X̂ � if bℓ then s1 else s2 iff Ê , X̂ � s1 ∧ Ê , X̂ � s2 ∧

(t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s1)) ∧ (f̂alse(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s2)) ∧

∀ℓ1 ∈ last(s1), X̂ (ℓ1) ⊑ X̂ (ℓ) ∧ ∀ℓ2 ∈ last(s2). X̂ (ℓ2) ⊑ X̂ (ℓ)

where (ρ̂, ĥ, f̂) = Ê (ℓ)

Ê , X̂ � while bℓ do s1 end iff Ê , X̂ � s1 ∧

(t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s1)) ∧ (f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂ (ℓ) ∧

∀ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ Ê (ℓ) where (ρ̂, ĥ, f̂) = Ê (ℓ)

Ê , X̂ � s1 ⊕
ℓ s2 iff Ê , X̂ � s1 ∧ Ê , X̂ � s2 ∧ Ê (ℓ) ⊑ Ê (first(s1)) ∧ Ê (ℓ) ⊑ Ê (first(s2)) ∧

∀ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ X̂ (ℓ) ∧ ∀ℓ2 ∈ last(s2). X̂ (ℓ2) ⊑ X̂ (ℓ)

Ê , X̂ � ch?ℓx iff ∀[ch!v̂a] ∈ r̂ange(f̂). (ch!v̂ = p̂roject([ch!v̂a]) ∧ D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅

=⇒ (âssign(ρ̂, x , v̂), ĥ · ch?v̂, D̂r̂epr([ch!v̂a])
(f̂)) ⊑ X̂ (ℓ))

where (ρ̂, ĥ, f̂) = Ê (ℓ)

Ê , X̂ � ch!ℓe iff ∀[ch?v̂a] ∈ r̂ange(f̂). (ch?v̂ = p̂roject([ch?v̂a]) ∧ v̂ ⊓ v̂′ 6= ⊥ ∧ D̂r̂epr([ch?v̂a])
(f̂) 6⊏∼ ∅

=⇒ (ρ̂, ĥ · ch!(v̂ ⊓ v̂′), D̂r̂epr([ch?v̂a])(f̂)) ⊑ X̂ (ℓ))

where (ρ̂, ĥ, f̂) = Ê (ℓ) ∧ v̂′ = Â(e, ρ̂)

Ê , X̂ � stop
ℓ iff (⊥, ĥ, f̂) ⊑ X̂ (ℓ) where (ρ̂, ĥ, f̂) = Ê (ℓ)

Figure 11: Static analysis of the process language

rev(∅) = ∅

rev(ǫ) = ǫ

rev(ℓ) = ℓ

rev(r1 · r2) = rev(r2) · rev(r1)

rev(r∗) = (rev(r))∗

rev(r1 + r2) = rev(r1) + rev(r2)

rev(r1 & r2) = rev(r1) & rev(r2)

rev(∁ r) = ∁ rev(r)

Figure 12: Symbolic reversal rev : R̂A −→ R̂A of LREs

the involved processes, and we discuss a prototype implementation
realizing these.

5.1 Widening

Kleene iteration of a monotone function over LREs is not guaran-
teed to terminate since the domain does not satisfy the ACC. As
a consequence we need a widening operator. In Midtgaard et al.
(2016) we proposed an initial widening operator ▽ for LREs. By
utilizing that regular languages are closed under reversal, in this
section we phrase an alternative widening operator that works by
reversing both its arguments, widening with ▽, and finally revers-
ing the result.

We first phrase reversal as a symbolic operation over LREs in
Fig. 12. To prove that the approach constitutes a widening operator
we need a few helper lemmas, starting with two reversals yielding
the identity.

Lemma 5.1 (rev twice is identity). ∀r ∈ R̂A. rev(rev(r)) = r

Secondly, we prove that the symbolic reversal actually reserves the
denoted language.

Lemma 5.2 (rev is reverse). ∀r ∈ R̂A. L(rev(r)) = rev(L(r))
where rev(S) = {rev(s) | s ∈ S}

Finally, we need that rev is monotone with respect to the language
ordering.

Lemma 5.3 (rev is monotone). ∀r, r′ ∈ R̂A. r ⊏∼ r′ =⇒
rev(r) ⊏∼ rev(r′)

We are now in position to prove the main result: that ‘reverse
widening’ constitutes a widening.

Theorem 5.1 (Reversing a widening operator over LREs). If ▽ is
a widening operator then r▽rev r

′ = rev(rev(r)▽ rev(r′)) is a
widening operator.

5.2 Intra-process analysis algorithm

We can perform an intra-process analysis of one process given an
LRE describing the communication behaviour of the other pro-
cess. The result of such an intra-process analysis represents a post-
fixed point corresponding to the analysis specification of Fig. 11.
To ensure termination of the intra-process analysis we compute
the solution by iteration with widening and a subsequent itera-
tion with narrowing. Following standard abstract interpretation lit-
erature (Cousot 1981; Bourdoncle 1993), we perform a minimal
amount of widening on loop headers to limit the potential informa-
tion loss.

There can be more than one cause of infinite chains. If the
value domain does not satisfy the ACC, such as the intervals, we
need to perform widening over them to ensure termination. For
example, for the interval domain we can use the standard widening
operator (Cousot and Cousot 1976). We can subsequently lift the
value domain’s widening operator ▽v to form a widening operator
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over abstract stores as follows:

ρ̂▽st ρ̂
′ =





ρ̂′ ρ̂ = ⊥

ρ̂ ρ̂′ = ⊥

λx . ρ̂(x)▽v ρ̂
′(x)

Finally we combine these widening operators into a widening op-
erator for the analysis triples:

(ρ̂, ĥ, f̂)▽(ρ̂′, ĥ′, f̂ ′) = (ρ̂▽st ρ̂
′, ĥ▽ ĥ′, f̂ + f̂ ′)

thereby widening over both abstract stores (and abstract values)
and LREs. Note how we do not widen over futures. As futures
are consumed by the intra-process analysis we do not need to.
In particular, since there are only finitely many derivatives of an
LRE (up to associativity, commutivity, and idempotence of +),
we can only form finitely many different LREs by composing two
derivatives of a future into new LRE futures, thereby eliminating
the need for widening (Brzozowski 1964; Midtgaard et al. 2016).
In contrast histories are produced by the analysis and widening is
therefore required to infer loop invariants for communication while
ensuring termination.

To improve upon a post-fixed point computed as above, we
can compute a second iteration with narrowing. To do so we can
similarly lift a narrowing operator over the value domain △v to a
narrowing operator over abstract stores △st . Finally we can lift △st

to a narrowing operator for analysis triples:

(ρ̂, ĥ, f̂)△(ρ̂′, ĥ′, f̂ ′) = (ρ̂△st ρ̂
′, ĥ, f̂)

This corresponds to performing no narrowing over LREs: r△ r′ =
r which trivially satisfies the narrowing requirements. We have not
investigated narrowing operators over LREs at this point.

The example programming language is structured, meaning that
communication analysis of

• the empty statement and assignment should give rise to epsilon,

• message sending and receiving should give rise to output/input
characters,

• sequences should give rise to concatenation,

• conditionals and choice should give rise to sum, and

• loops should give rise to Kleene star,

which suggests a purely syntactical over-approximation without the
need for fixed-point computations and widening operators. Such an
approximation of communication is certainly possible and will fur-
thermore allow us to quickly infer coarser loop invariants without
iteration, e.g., with worst case assumptions of values and by dis-
abling filter functions. Finally this is also a consequence of our
chosen presentation language: for an unstructured programming
language with, e.g., jumps, some form of iteration is required.

5.3 Inter-process analysis algorithms

Given a pair of processes s1, s2, if Ê , X̂ � s1 and Êρ(first(s1))
is a sound approximation of the initial environment and ǫ ⊏∼
Êh(first(s1)) and ⊤∗ ⊏∼ Êf (first(s1)) then

⊔
ℓ Êh(ℓ) captures

the prefix of all possible communications with the other process

s2. Hence we can use
⊔

ℓ Êh(ℓ) from the intra-process analysis of
s1 as our starting point future for analyzing s2. Since there are only
a finite number of labels in a given process one can easily compute
this join—either after analysis completion, or underway by joining
into one big accumulator of communication prefixes. We can then
subsequently use the analysis result from s2 to reanalyze s1. This
suggests an iterative round-robin inter-process analysis approach.

Round-robin algorithm

The round-robin algorithm listed in Fig. 13 on the left initially an-
alyzes s1 under worst-case assumptions about the communication
behaviour of s2 and then repeatedly reanalyzes either s1 or s2 based
on the analysis result of the other.

Widening ensures that the two intra-process analysis steps ter-
minate. We leave the termination condition for the outer inter-
process analysis unspecified. For example, we can limit the number
of round trip analysis iterations to a constant k, which will guaran-
tee termination.

Refined algorithm

The somewhat arbitrary choice of initially analyzing the first
syntactically-occurring process may affect the outcome of the anal-
ysis, if we, e.g., stick to a fixed number of round trips. To prevent
this from happening we may instead analyze both processes simul-
taneously. The algorithm listed in Fig. 13 on the right performs
such a simultaneous analysis. In effect, this refined analysis algo-
rithm thereby requires more loop iterations to propagate informa-
tion from s1 through to s2 and back to s1.

5.4 Implementation and experiments

We have implemented a prototype of the first iterative analysis al-
gorithm in OCaml and experimented with both the initial widening
operator (Midtgaard et al. 2016) and well as the reverse widening
described in Sec. 5.1. The prototype analysis implementation by
default uses an interval domain to approximate values. It supports
a slightly larger language than the minimal one described in Sec. 3,
e.g., by allowing more comparison operators and by allowing com-
parisons between arbitrary arithmetic expressions rather than just
variables. By default our prototype implementation attempts to run
5 iterations of the iterated algorithm. However it stops earlier if an
iteration does not give rise to a more precise collective commu-
nication prefix. To partition atoms of the reduced/smash product

Interval ∗ V̂al for capturing network reads and writes the imple-
mentation furthermore uses the functional representation discussed
in Sec. 4.2.

The prototype is available for download at https://github.
com/jmid/iterated. Furthermore we have compiled the analysis
code to JavaScript using the js_of_ocaml compiler and hooked
the resulting JavaScript code up to a web-interface. The interested
reader is invited to try the (purely client-side) analysis interface at
https://jmid.github.io/iterated/.

Example 1: Round-Trip Communication As a first example,
consider the following program:

spawn proc1() { ch?x }
spawn proc2() { ch!42 }

If we first analyze proc1 under the worst case assumption f̂1 = ⊤∗

for the future (environment) communication, we infer the collective

communication prefix f̂2 = ǫ + ch?[−∞; +∞], representing
that any integer value can be read from channel ch (along with

the prefix ǫ). Using f̂2 for the subsequent analysis of proc2, we

infer the collective communication prefix f̂1 = ǫ + ch![42; 42],
representing that the process will write the value 42 to channel
ch (suitably prefix closed). This concludes the first iteration of
the iterative analysis. In the second iteration, when we reanalyze
proc1 under this more precise assumption, we infer the collective

communication prefix f̂2 = ǫ + ch?[42; 42], representing that
the process can read the value 42 from channel ch. Reanalyzing
proc2 under this more precise assumption, we again infer the

collective communication prefix f̂1 = ǫ+ch![42; 42]. The analysis
implementation therefore stops early after two iterations.
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proc Round-Robin-Analysis (s1, s2)

f̂1 :=⊤∗

while (termination-condition)

Ê ,X̂ := analyze s1 from ǫ ⊏∼ Êh(first(s1)) and f̂1 ⊏∼ Êf (first(s1))

f̂2 :=
⊔

ℓ Êh(ℓ)

Ê ′ ,X̂ ′ := analyze s2 from ǫ ⊏∼ Ê
′

h
(first(s2)) and f̂2 ⊏∼ Ê

′

f
(first(s2))

f̂1 :=
⊔

ℓ Ê
′

h
(ℓ)

proc Simultaneous-Analysis (s1, s2)

f̂1 :=⊤∗

f̂2 :=⊤∗

while (termination-condition)

Ê ,X̂ := analyze s1 from ǫ ⊏∼ Êh(first(s1)) and f̂1 ⊏∼ Êf (first(s1))

Ê ′ ,X̂ ′ := analyze s2 from ǫ ⊏∼ Ê
′

h(first(s2)) and f̂2 ⊏∼ Ê
′

f (first(s2))

f̂1 := f̂1 &
⊔

ℓ Ê
′

h
(ℓ)

f̂2 := f̂2 &
⊔

ℓ Êh(ℓ)

Figure 13: A round-robin analysis algorithm (left) and a simultaneous analysis algorithm (right)

Example 2: Deadlock As a second example, consider the follow-
ing program:

spawn proc1() { ch_a?x;
ch_b!1; }

spawn proc2() { ch_b?y;
ch_a!2; }

When we first analyze proc1 under the worst case assumption

f̂1 = ⊤∗, we infer the collective communication prefix f̂2 =
ǫ + ch_a?[−∞; +∞] + (ch_a?[−∞; +∞] · ch_b![1; 1]), repre-
senting that any integer value can first be read from channel ch_a

followed by an output of value 1 on channel ch_b. Using f̂2 for
the subsequent analysis of proc2, we infer the collective commu-

nication prefix f̂1 = ǫ, representing that the process cannot per-
form any successful network communication with the given envi-
ronment. This situation arises from the read-case which will per-

form a derivative of f̂2 with respect to a representative write atom
ch_b!v̂a, thereby resulting in the empty future ∅. We therefore have
no other contributions to the collective communication prefix than
the initial ǫ history. This step furthermore concludes the first it-
eration. In the second iteration, when we reanalyze proc1 under
this more precise assumption, we infer the collective communi-

cation prefix f̂2 = ǫ, representing that the first process similarly
cannot perform any successful network communication. Reanalyz-
ing proc2 under this more precise assumption, we again infer the

collective communication prefix f̂1 = ǫ. Again the analysis imple-
mentation therefore stops early after two iterations.

Example 3: Non-termination As a third example, consider the
program in Fig. 1 from the introduction. When we first analyze
proc1 under the worst case assumption we infer the collective

communication prefix f̂2 = ǫ+ch?[−∞; +∞]·(ch?[−∞; +∞])∗

which we can phrase more compactly as (ch?[−∞; +∞])∗. Using

f̂2 for the analysis of proc2, we infer the collective communication

prefix f̂1 = ǫ+((ch![1; 999]+ch![1000; 1000]) ·(ch![1; 1000])∗),
which we can also phrase more compactly as (ch![1; 1000])∗ . This
step concludes the first iteration. In the second iteration, when
we reanalyze proc1 under this more precise assumption, we in-

fer the collective communication prefix f̂2 = ǫ + ((ch?[1; 999] +
ch?[1000; 1000]) · (ch?[1; 999] + ch?[1000; 1000])∗), which we
can also phrase more compactly as (ch?[1; 1000])∗ . As a conse-
quence, in the abstract store the variable x takes a value in [1; 1000].

The f̂alse filter function applied to the condition 0 < x in this ab-
stract store yields⊥ for the exit of proc1’s loop and thereby proves
non-termination.3 After a final reanalysis of proc2 the analysis im-
plementation again stops early.

3 Here we utilize a comparison between a numeral 0 and a variable x, which
strictly speaking is not syntactically valid for the formalized language frag-
ment. However it is allowed by the prototype implementation. Furthermore
we can achieve the same result within the bounds of the formalized frag-

In addition to the above examples, we have experimented with a
number of examples from the literature, such as two CSP examples
from Cousot and Cousot (Cousot and Cousot 1980), and a simple
math server adapted from Vasconcelos, Gay, and Ravara (Vascon-
celos et al. 2006)., For future work we plan to extend the supported
language further. This would furthermore allow us to expose the
resulting prototype to bigger examples.

6. Wellformedness

This section is dedicated to verifying the assumptions required for
the analysis and to argue that solutions formally exist.

6.1 Atom-preserving Galois insertions

In order for the analysis to be well-defined over the LREs, we
should ensure that the read and write abstractions satisfy the re-
quirements of the parametric domain, i.e., that the abstractions are
Galois insertions and map atoms to atoms.

Lemma 6.1 (Read and write abstractions are atom-preserving Ga-
lois insertions).

℘(Channel × {?} × Val) −−−−→−→←−−−−−
αrd

γrd
Interval ∗ V̂al

℘(Channel × {!} ×Val) −−−−→−→←−−−−−
αwr

γwr
Interval ∗ V̂al

where αrd (S) =
⊔

ch?v∈S

(αInt ({ch}), αv({v}))

γrd ([l; u], v̂) =
⋃

ch∈γInt ([l;u])
v∈γv(v̂)

{ch?v}

αwr (S) =
⊔

ch!v∈S

(αInt ({ch}), αv({v}))

γwr ([l;u], v̂) =
⋃

ch∈γInt ([l;u])
v∈γv(v̂)

{ch!v}

Furthermore:

αrd :Atoms(℘(Channel×{?}×Val)) −→ Atoms(Interval ∗V̂al)

αwr :Atoms(℘(Channel×{!}×Val)) −→ Atoms(Interval ∗V̂al)

As a corollary the abstractions are atomistic Galois insertions.

Lemma 6.2 (Channel abstraction is an atom-preserving Galois
insertion).

℘(Action) −−−−→−→←−−−−−
αch

γch
Ĉh(V̂al)

where Action = (Channel×{?}×Val) ∪ (Channel×{!}×Val )

αch (S) = (αrd ({ch?v ∈ S}), αwr ({ch!v ∈ S}))

γch (v̂r, v̂w) = γwr (v̂w) ∪ γrd (v̂r)

ment, by initially binding the value 0 to a fresh variable zero and using a
comparison zero < x instead.

9



Furthermore αch : Atoms(℘(Action)) −→ Atoms(Ĉh(V̂al)).

As a corollary the abstraction is an atomistic Galois insertion.

6.2 Monotonicity of auxiliary functions

Our auxiliary functions are monotone which we will utilize in the
following subsection to argue for existence of solutions.

Lemma 6.3 (Monotonicity of Â).

∀e, ρ̂, ρ̂′. ρ̂ ⊑̇ ρ̂ =⇒ Â(e, ρ̂) ⊑ Â(e, ρ̂′)

Lemma 6.4 (Monotonicity of âssign).

∀ρ̂, ρ̂′, x , v̂. ρ̂ ⊑̇ ρ̂′ =⇒ âssign(ρ̂, x , v̂) ⊑̇ âssign(ρ̂′, x , v̂)

∀ρ̂, x , v̂, v̂′. v̂ ⊑ v̂′ =⇒ âssign(ρ̂, x , v̂) ⊑̇ âssign(ρ̂, x , v̂′)

Lemma 6.5 (Monotonicity of t̂rue , f̂alse).

∀b, ρ̂, ρ̂′. ρ̂ ⊑̇ ρ̂′ =⇒ t̂rue(b, ρ̂) ⊑̇ t̂rue(b, ρ̂′)

∧ ρ̂ ⊑̇ ρ̂′ =⇒ f̂alse(b, ρ̂) ⊑̇ f̂alse(b, ρ̂′)

6.3 Moore family failure

The denotation L acts as our concretization function by mapping a
LRE to the set of strings it represents. One may therefore wonder
whether one can formulate a Galois connection for the LREs. We
answer this question negatively: the abstract domain does not have
a Galois connection (it is concretization only). In particular, we can

show that {L(r) | r ∈ R̂A} does not constitute Moore family:

Lemma 6.6 (Moore family failure). {L(r) | r ∈ R̂A} is not a
Moore family

As a corollary there does not exist a Galois connection (Cousot and
Cousot 1992a). However by definition L preserves binary meets:
L(r1 & r2) = L(r1) ∩ L(r2).

6.4 Existence of analysis solutions

A popular way to argue for the existence of solutions to an analysis
specification such as that of Fig. 11 is to show that the solutions
constitute a Moore family. However we have no hope of doing so
because of our dependence on LREs. To argue that our analysis
specification has solutions we instead prove that top is a valid
solution and that the binary meet of two solutions is itself also a
solution.

Lemma 6.7 (Top is a valid analysis solution).

For all s. Ê⊤, X̂⊤ � s where Ê⊤ = λℓ. (λx .⊤A,⊤
∗,⊤∗) and

X̂⊤ = λℓ. (λx .⊤A,⊤
∗,⊤∗)

Lemma 6.8 (Meet preserves solutions).

For all s, Ê1, X̂ 1, Ê2, X̂ 2. If Ê1, X̂ 1 � s and Ê2, X̂ 2 � s then

Ê1 ⊓ Ê2, X̂ 1 ⊓ X̂ 2 � s

7. Soundness

To build up towards a soundness proof for the entire analysis, we
first establish soundness for the auxiliary functions, we then prove
soundness of the instrumented semantics with respect to sequences
of the original operational semantics, and finally prove soundness
of the analysis with respect to the instrumented semantics.

7.1 Soundness of auxiliary functions

We first establish a Galois insertion connecting sets of stores to
abstract stores.

Lemma 7.1 (αst , γst is a Galois insertion).

〈℘(Var →֒ Val);⊆〉 −−−−→−→←−−−−−
αst

γst
〈(Var −→ V̂al)⊥; ⊑̇ 〉

where

αst (S) =

{
⊥ S = ∅

λx . αv({ρ(x) | ρ ∈ S ∧ ρ(x) defined}) S 6= ∅

γst (ρ̂) =

{
∅ ρ̂ = ⊥

{ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ γv(ρ̂(x))} ρ̂ 6= ⊥

for some value abstraction 〈℘(Val);⊆〉 −−−→−→←−−−−
αv

γv
〈V̂al ;⊑〉 between

complete lattices and where the lifted ordering ⊑̇ is extended such
that ⊥ is less or equal to all other elements.

Note that by definition γst(ρ̂) 6= ∅ for ρ̂ 6= ⊥ as the partial function
undefined at all entries is always included in the result (it always
fulfills the condition). Based on the Galois insertions for values and

stores we can now prove soundness of Â, âssign , t̂rue , and f̂alse.

Lemma 7.2 (Soundness of Â).

∀e ∈ E, ρ̂ ∈ Ŝtore .

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e ⇓ v}) ⊑ Â(e, ρ̂)

Lemma 7.3 (Soundness of âssign).

∀ρ̂, x , v̂.

αst ({ρ[x 7→ v] | v ∈ γv(v̂) ∧ ρ ∈ γst (ρ̂)}) ⊑̇ âssign(ρ̂, x , v̂)

For the Boolean expressions we over-approximate versions of true
and false defined as follows:

true(b, S) = {ρ ∈ S | ρ ⊢B b ⇓ tt}

false(b, S) = {ρ ∈ S | ρ ⊢B b ⇓ ff}

Lemma 7.4 (Soundness of t̂rue and f̂alse).

αst (true(b, γst(ρ̂))) ⊑̇ t̂rue(b, ρ̂)

and αst (false(b, γst(ρ̂))) ⊑̇ f̂alse(b, ρ̂)

This can be proved for both the generic definition in Fig. 9 as well
as for the specialized versions such as the one in Fig. 10 which takes
the details of the concrete domain, e.g., intervals, into account. In
the appendix we provide the proof for both the generic and the
interval versions.

7.2 Soundness of instrumented semantics

We formulate in Fig. 14 an instrumented operational semantics
where judgments can take one of two forms, depending on whether
the right-hand-side configuration is final or not:

〈sℓ, ρ, h〉
α
−→ 〈sℓ11 , ρ1, h1〉 or 〈sℓ, ρ, h〉

α
−→ 〈ρ1, h1〉

(configurations in two forms)

The h component in a configuration records the concrete history
of network actions. Even though not formulated as such, we can
understand the instrumentation as an abstraction of a trace-based
collecting semantics.

We can now phrase soundness of the instrumented semantics
with respect to traces of the original operational semantics.

Theorem 7.1 (Soundness of instrumented semantics).

If c1 ‖ c1
α1,β1

=⇒ c2 ‖ c2
α2,β2

=⇒ · · ·
αn−1,βn−1

=⇒ cn ‖ cn from

some initial state c1 ‖ c1 = 〈sℓ, ρ〉 ‖ 〈sℓ, ρ〉 then there exists an
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〈skipℓ, ρ, h〉
τ
−→ 〈ρ, h · τ〉

ISKIP

ρ ⊢A e ⇓ v

〈x :=ℓe, ρ, h〉
τ
−→ 〈ρ[x 7→ v], h · τ〉

IASSIGN

〈s1, ρ, h〉
α
−→ 〈s3, ρ

′, h′〉

〈s1 ; s2, ρ, h〉
α
−→ 〈s3 ; s2, ρ

′, h′〉
ISEQ1

〈s1, ρ, h〉
α
−→ 〈ρ′, h′〉

〈s1 ; s2, ρ, h〉
α
−→ 〈s2, ρ

′, h′〉
ISEQ2

ρ ⊢B b ⇓ tt

〈if bℓ then s1 else s2, ρ, h〉
τ
−→ 〈s1, ρ, h · τ〉

IIF1

ρ ⊢B b ⇓ ff

〈if bℓ then s1 else s2, ρ, h〉
τ
−→ 〈s2, ρ, h · τ〉

IIF2

IWHILE1
ρ ⊢B b ⇓ tt

〈while bℓ do s1 end, ρ, h〉
τ
−→ 〈s1 ; while bℓ do s1 end, ρ, h · τ〉

ρ ⊢B b ⇓ ff

〈while bℓ do s1 end, ρ, h〉
τ
−→ 〈ρ, h · τ〉

IWHILE2

〈ch?ℓx , ρ, h〉
ch?v
−→ 〈ρ[x 7→ v], h · ch?v〉

IREAD

ρ ⊢A e ⇓ v

〈ch!ℓe, ρ, h〉
ch!v
−→ 〈ρ, h · ch!v〉

IWRITE

〈s1, ρ, h〉
α
−→ ic1

〈s1 ⊕
ℓ s2, ρ, h〉

α
−→ ic1

ICHOICE1

〈s2, ρ, h〉
α
−→ ic2

〈s1 ⊕
ℓ s2, ρ, h〉

α
−→ ic2

ICHOICE2

〈s1, ρ1, h1〉
τ
−→ ic′1

〈s1, ρ1, h1〉 ‖ ic2 =⇒ ic′1 ‖ ic2
ISYSLEFT

〈s2, ρ2, h2〉
τ
−→ ic′2

ic1 ‖ 〈s2, ρ2, h2〉 =⇒ ic1 ‖ ic
′
2

ISYSRIGHT

〈s1, ρ1, h1〉
ch!v
−→ ic′1 〈s2, ρ2, h2〉

ch?v
−→ ic′2

〈s1, ρ1, h1〉 ‖ 〈s2, ρ2, h2〉 =⇒ ic′1 ‖ ic
′
2

ISYSWR

〈s1, ρ1, h1〉
ch?v
−→ ic′1 〈s2, ρ2, h2〉

ch!v
−→ ic′2

〈s1, ρ1, h1〉 ‖ 〈s2, ρ2, h2〉 =⇒ ic′1 ‖ ic
′
2

ISYSRW

Figure 14: Instrumented operational semantics

instrumented trace

ic1 ‖ ic1 =⇒ ic2 ‖ ic2 =⇒ . . . =⇒ icn ‖ icn
(corr. instr. trace)

∧ ci, hi = proj (ici) ∧ ci, hi = proj (ici) i ∈ {1, . . . , n}
(with corr. confs)

∧ α1α2 . . . αn−1 = hn ∧ β1β2 . . . βn−1 = hn

(and comm. histories)

where α and β range over ǫ (no computation step), τ (no com-
munication), ch?v (channel read), ch!v (channel write), and where
proj : ΣI −→ Σ is defined as follows:

proj (〈ρ, h〉) = ρ, h

proj (〈sℓ, ρ, h〉) = 〈sℓ, ρ〉, h

In the theorem we furthermore utilize that ǫ doubles as the
empty string of actions. To prove the theorem we apply the fol-
lowing helper lemma that relates single steps in the two semantics.

Lemma 7.5 (Process step soundness).

If 〈sℓ, ρ〉, h = proj (〈sℓ, ρ, h〉) and 〈sℓ, ρ〉
α
−→ c then

〈sℓ, ρ, h〉
α
−→ ic such that c, (h · α) = proj (ic)

where α ranges over τ , ch?v, and ch!v.

To phrase soundness of the analysis with respect to the instru-
mented semantics it will be convenient to decouple a system trace
into two process traces:

Lemma 7.6 (Decoupling a system trace). If

ic1 ‖ ic1 =⇒ ic2 ‖ ic2 =⇒ . . . =⇒ icn ‖ icn

then we can decouple the system trace into two process traces

ic1
α1−→ ic2

α2−→ . . .
αn−1

−→ icn

ic1
β1−→ ic2

β2−→ . . .
βn−1

−→ icn

where we write ic
ǫ
−→ ic′ when ic = ic′.

Since two processes in a system trace do not necessarily perform
equally many computation steps, such ǫ process steps nevertheless
lets us decouple a system trace into process traces of equal length.
For example, this may happen if there are two processes each
containing a loop but where the loop of the first process performs
three steps for each step in the second process’s loop.

7.3 Soundness of analysis

To prove soundness of the analysis with respect to the instrumented
semantics, we first define a structural, τ -deleting operation:

|ǫ| = ǫ |α · h| =

{
|h| α = τ

α · |h| α 6= τ

We will use |−| for a homomorphic/elementwise abstraction of
communication histories. By two simple induction arguments we
can prove the following lemma about |−|:

Lemma 7.7 (Actions at the end of a string).

|h · τ | = |h| ∧ |h · α| = |h| · α for α 6= τ

Again a little helper lemma comes handy, this one concerning
last .

Lemma 7.8 (Preservation of last).

∀s, s1, ρ, ρ1, h, h1, α. 〈s, ρ, h〉
α
−→ 〈s1, ρ1, h1〉 =⇒ last(s1) ⊆

last(s)

We are now ready to phrase soundness of a single process
step. We express this property in two lemmas depending on
whether we transition to a final configuration (Lemma 7.9) or not
(Lemma 7.10).

11



Lemma 7.9 (Local soundness of store and history specification 1).

∀s, ρ, ρ1, h, h1, α, Ê , X̂ , f.

〈s, ρ, h〉
α
−→ 〈ρ1, h1〉 ∧ Ê , X̂ � s ∧ ρ∈γst(Êρ(ℓ)) ∧

|h|∈L(Êh(ℓ)) ∧ |α · f |∈L(Êf(ℓ)) where ℓ = first(s)

=⇒ h1 = h·α ∧ ∀ℓ1∈ last(s). ρ1∈γst(X̂ρ(ℓ1)) ∧

|h·α|∈L(X̂h(ℓ1)) ∧ |f |∈L(X̂f (ℓ1))

using the notation τ = τ ch?v = ch!v ch!v = ch?v

for expressing a converse network action.

Lemma 7.10 (Local soundness of store and history specification
2).

∀s, s1, ρ, ρ1, h, h1, α, Ê , X̂ , f.

〈s, ρ, h〉
α
−→ 〈s1, ρ1, h1〉 ∧ Ê , X̂ � s ∧ ρ∈γst(Êρ(ℓ)) ∧

|h|∈L(Êh(ℓ)) ∧ |α·f |∈L(Êf (ℓ)) where ℓ = first(s)

=⇒ Ê , X̂ � s1 ∧ h1=h·α ∧ ρ1∈γst(Êρ(ℓ1))∧

|h·α|∈L(Êh(ℓ1)) ∧ |f |∈L(Êf (ℓ1))

where ℓ1= first(s1)

We can now utilize the local single process soundness results to
prove soundness of a system consisting of two processes:

Theorem 7.2 (Non-terminating system analysis soundness). Given

a decoupled system trace ic1
α1−→ ic2

α2−→ . . .
αn−1

−→ icn ∧ ic1
β1−→

ic2
β2−→ . . .

βn−1

−→ icn from some state ic1 = 〈s1, ρ1, h1〉 to

some state icn = 〈sn, ρn, hn〉 and assuming Ê , X̂ � s1, ρ1 ∈

γst(Êρ(first(s1))), |h1| ∈ L(Êh(first(s1))), and |β1β2. . .βn−1f |

∈L(Êf (first(s1))) then

ρn ∈ γst (Êρ(first(sn))),

|h1α1α2 . . . αn−1| = |hn| ∈ L(Êh(first(sn))), and

|f | ∈ γst (Êf (first(sn)))

From the general theorem we can then extract the following
corollary which states soundness of any reachable state and thereby

proves why the collective history
⊔

ℓ Êh(ℓ) is sufficient in our anal-
ysis algorithms. By symmetry the corresponding property allows
us to analyze and extract a sound collective history from s2.

Corollary 7.1 (Analysis soundness). Given a decoupled system

trace ic1
α1−→ ic2

α2−→ . . .
αn−1

−→ icn ∧ ic1
β1−→ ic2

β2−→

. . .
βn−1

−→ icn from some initial state ic1 = 〈s1, ρ1, ǫ〉 to any

reachable state icn = 〈sn, ρn, hn〉 and assuming Ê , X̂ � s1 and
sound approximations of

• the initial environment ρ1 ∈ γst (Êρ(first(s1))),

• the initial history ǫ ∈ L(Êh(first(s1))), and of
• the surrounding communication

|β1β2 . . . βn−1| ∈ L(Êf (first(s1)))

then the entry point Ê (first(sn)) soundly approximates

• the reachable stores ρn ∈ γst(Êρ(first(sn))),
• the communication history

|α1α2. . .αn−1| = |hn| ∈ L(Êh(first(sn))) and

• the communication future ǫ ∈ L(Êf (first(sn))).

The alert reader may have noticed that this expresses soundness
of any reachable, non-terminal configuration. As such, for a termi-

nating process, e.g., 〈ch!ℓe, ρ, ǫ〉
ch!v
−→ 〈ρ, ch!v〉 there is no non-

terminal configuration 〈sℓ
′

, ρ, h〉 from which we can pick up the

last network activity ch!v in Êh(ℓ
′) as a precondition. We circum-

vent this issue by inserting a dummy skip statement at the end of
each process. As a consequence, a process such as the above now
rewrites to a non-terminal configuration (with the dummy state-

ment): 〈ch!ℓe ; skipℓ
′

, ρ, ǫ〉
ch!v
−→ 〈skipℓ

′

, ρ, ch!v〉 from which we

can pick up the last network activity ch!v in Êh(ℓ
′) as the dummy

statement’s precondition.

8. Related Work

Static analysis of processes already has a rich history. Cousot and
Cousot (1980) initially extended the abstract interpretation frame-
work to analyze communicating sequential processes. Our work
differs in that the domain of LREs can express temporal proper-
ties (’a value is read from channel ch2 after a value is written to
channel ch1’), whereas the domains of Cousot and Cousot (1980)
do not. Since then a range of papers have investigated static anal-
yses of process algebras and mobile calculi. For example, Venet
(1998) developed a static analysis framework for π-calculus, Ry-
dhof Hansen et al. (1999) develop a control-flow analysis and an
occurrence counting analysis for mobile ambients, and Feret devel-
oped static analyses (control-flow analysis and occurrence count-
ing analysis) for π-calculus (Feret 2000) and later for mobile ambi-
ents (Feret 2001) in the form of a parameterized control-flow analy-
sis. Instead of analyzing such high-level process models, we focus
on extending standard analyses to also analyze the order and the
content of network communication such that the knowledge from
traditional domains and LREs may benefit from each other.

Recently, Miné has developed a static analysis for programs
with shared-memory concurrency (Miné 2014). Both Miné’s ap-
proach and our approach share the idea of extending (or lifting)
existing analysis techniques to deal with concurrency. In contrast
to the present analysis that focuses on inferring message content
(and order) Miné’s analysis gradually infers the interference of in-
dividual threads, i.e., the values stored into shared locations. His
analysis is thread modular, meaning that it can analyze a thread in
isolation based on the interference of other threads without having
to consider their source code. This aspect is reminiscent of how
we analyze one process in isolation based on its future. Miné’s
work furthermore builds on viewing rely-guaranteee reasoning as
an abstract interpretation, a view which is then used to infer rely-
assertions. Similarly one can view our process futures as a form of
inferred rely-assertions.

The present paper builds on Midtgaard et al. (2016), in which
we developed the domain of LREs. As a use-case the previous
paper devised an analysis with futures—but it lacked histories. As a
consequence the analysis was able only to analyze a single process
against a manually written network policy given by an LRE (a
future). Furthermore the work lacked a formal soundness proof.
The current paper improves on the previous paper by devising an
analysis that removes the need for any manual policy specification
and furthermore proves that iterative algorithms that repeat it are
sound with respect to an operational semantics.

Abstract interpretation has a history of iterative analysis al-
gorithms over decreasing chains. Examples include Bourdoncle
(1993)’s iterated forward-backward analysis for statically debug-
ging, Cousot and Cousot (1992a)’s iterated forward-backward anal-
ysis algorithm, and Logozzo (2004)’s analysis algorithm for an-
alyzing object-oriented classes against an environment of client
callers. Our analysis approach is inspired by the latter. Logozzo
(2004) devises a modular analysis of class invariants using con-
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texts approximated by a lattice-valued regular expression domain
to capture calling policies. In Logozzo’s work the ability to analyze
classes separately is however central, with concurrency being less
of a concern. Under the view of objects as processes that send and
receive messages, the two approaches are however clearly related.

Our analysis depends on LREs: a regular language domain. A
similar domain of lattice automata was developed by Le Gall et al.
(2006) and Le Gall and Jeannet (2007). Both LREs and lattice
automata depend on atomistic lattices. The two parametric domains
furthermore echo the well-known correspondence between “plain”
regular languages and finite automata. Given several decades of
work on automata and process algebra to capture in an abstract
model phenomena of software processes that lends itself to formal
reasoning, a natural next step is to push for automated reasoning,
e.g., static analysis, over suitable lattice-valued generalizations of
such structures.

In terms of expressivity, the kinds of properties we can infer
with LREs could also be expressed with session types (Dezani-
Ciancaglini and de’Liguoro 2009). However in order to also ex-
press the content of messages session types would have to be suit-
ably extended with a form of refinement types (Freeman and Pfen-
ning 1991) or liquid types (Rondon et al. 2008) to express mes-
sage contents. We stress that the current approach infers the net-
work communication automatically rather than just check it. In-
spired by how multiparty session types (Honda et al. 2008) lifted
session types’s previous restriction to two-party sessions, a natural
next step would be to extend the current analysis approach beyond
two parties as well.

9. Conclusion and Future Work

We have developed a static analysis targeting safety properties of
concurrent, message-passing programs. The approach combines
traditional abstract stores and lattice-valued regular expressions
that capture both order and content of network communication. In
the longer run we envision that the approach can be extended to
perform an iterated forwards/backwards analysis for static debug-
ging of message-passing programs along the lines of Bourdoncle.
Another avenue we would like to pursue is an extension of the ap-
proach to analyze the order and message content of a language with
asynchronous communication.
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A. Wellformedness proofs

A.1 Read and write abstractions are atom-preserving Galois
insertions

Proof. Let S ⊆ Channel ×{?}×Val and ([l; u], v̂) ∈ Interval ∗

V̂al be given.

αrd (S) ⊑ ([l;u], v̂)

⇐⇒
⊔

ch?v∈S

(αInt ({ch}), αv({v})) ⊑ ([l;u], v̂)

(by def. of αrd )

⇐⇒ ∀ch?v ∈ S. (αInt({ch}), αv({v})) ⊑ ([l;u], v̂)
(by def. of ⊔)

⇐⇒ ∀ch?v ∈ S. αInt ({ch}) ⊑ [l; u] ∧ αv({v}) ⊑ v̂
(by def. of ⊑)

⇐⇒ ∀ch?v ∈ S. ch ∈ γInt([l; u]) ∧ v ∈ γv(v̂)
(Galois conn.)

⇐⇒ S ⊆
⋃

ch∈γInt ([l;u])
v∈γv(v̂)

{ch?v} (by def. of ∪)

⇐⇒ S ⊆ γrd ([l;u], v̂) (by def. of γrd )

Since αInt and αv are onto, so is αrd by definition. Finally since
αInt : Atoms(Z) −→ Atoms(Interval) and αv : Atoms(Z) −→

Atoms(V̂al) by assumption, we have

αrd :Atoms(℘(Channel×{?}×Val))−→Atoms(Interval ∗V̂al)

The proof for write is identical (up to renaming).

A.2 Channel abstraction is an atom-preserving Galois
insertion

Proof. Let S ⊆ Action , (v̂r, v̂w) ∈ Ĉh(V̂al) be given.

αch (S) ⊑ (v̂r, v̂w)

⇐⇒ αrd ({ch?v ∈ S}) ⊑ v̂r ∧ αwr ({ch!v ∈ S}) ⊑ v̂w
(by def. of αch )

⇐⇒ {ch?v ∈ S} ⊆ αrd (v̂r) ∧ {ch!v ∈ S} ⊆ γwr (v̂w)
(Galois conn.)

⇐⇒ S ⊆ γrd(v̂r) ∪ γwr (v̂w) (by def. of Action)

⇐⇒ S ⊆ γch(v̂r, v̂w) (by def. of γch )

If αwr and αrd are onto, so is αch by definition. Finally since

αrd : Atoms(℘(Channel×{?}×Val )) −→ Atoms(Interval ∗V̂al)

αwr : Atoms(℘(Channel×{!}×Val )) −→ Atoms(Interval ∗V̂al)

we have αrd : Atoms(℘(Action)) −→ Atoms(Ĉh(V̂al)) since a
singleton set must be either a read or a write.
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A.3 Âmonotone

Proof. By structural induction on e. Let e and ρ̂ ⊑̇ ρ̂′ be given.

case n: By definition of Â: Â(n, ρ̂) = αv({n}) = Â(n, ρ̂
′)

case x : If ρ̂ = ⊥ then by definition of Â: Â(x , ρ̂) = ⊥ ⊑
Â(x , ρ̂′)

If ρ̂ 6= ⊥ then by definition of Â and assumption: Â(x , ρ̂) =

ρ̂(x) ⊑ ρ̂′(x) = Â(x , ρ̂′)

case ?: By definition of Â: Â(?, ρ̂) = ⊤ = Â(?, ρ̂′)
case e1 + e2:

Â(e1 + e2, ρ̂) = Â(e1, ρ̂) +̂ Â(e2, ρ̂) (by def. of Â)

⊑ Â(e1, ρ̂
′) +̂ Â(e2, ρ̂)
(by the IH, monotonicity of +̂)

⊑ Â(e1, ρ̂
′) +̂ Â(e2, ρ̂

′)
(by the IH, monotonicity of +̂)

= Â(e1 + e2, ρ̂
′) (by def. of Â)

case e1 − e2:

Â(e1 − e2, ρ̂) = Â(e1, ρ̂) −̂ Â(e2, ρ̂) (by def. of Â)

⊑ Â(e1, ρ̂
′) −̂ Â(e2, ρ̂)
(by the IH, monotonicity of −̂)

⊑ Â(e1, ρ̂
′) −̂ Â(e2, ρ̂

′)

(by the IH, monotonicity of −̂)

= Â(e1 − e2, ρ̂
′) (by def. of Â)

A.4 âssign monotone

In first argument

Proof. Let ρ̂ ⊑̇ ρ̂′ and x ,v̂ be given. Now: âssign(ρ̂, x , v̂) =

ρ̂[x 7→ v̂] ⊑̇ ρ̂′[x 7→ v̂] = âssign(ρ̂′, x , v̂)

In third argument

Proof. Let ρ̂,x , and v̂ ⊑ v̂′ be given. Now: âssign(ρ̂, x , v̂) =

ρ̂[x 7→ v̂] ⊑̇ ρ̂[x 7→ v̂′] = âssign(ρ̂, x , v̂′)

A.5 t̂rue monotone

Note: the following proof concerns t̂rue for the interval lattice. For
the parity lattice the proof is identical except for the last subcase
which is simpler, due to the simpler definition.

Proof. By structural induction on b. Let b and ρ̂ ⊑̇ ρ̂′ be given.

case tt: By definition of t̂rue : t̂rue(tt, ρ̂) = ρ̂ ⊑̇ ρ̂′ = t̂rue(tt, ρ̂′)

case ff: By definition of t̂rue : t̂rue(ff, ρ̂) = ⊥ = t̂rue(ff, ρ̂′)

case x1 < x2: We consider each case of t̂rue :

subcase ρ̂ = ⊥ ∨ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥: By definition of

t̂rue :
t̂rue(x1 < x2, ρ̂) = ⊥ ⊑̇ t̂rue(x1 < x2, ρ̂

′)
subcase ρ̂(x1) = [l1;u1] ∧ ρ̂(x2) = [l2;u2]: By assumption

we have ρ̂(x1) = [l1;u1] ⊑ ρ̂′(x1) = [l′1; u
′
1] and

ρ̂(x2) = [l2;u2] ⊑ ρ̂′(x2) = [l′2;u
′
2]. Now:

t̂rue(x1 < x2, ρ̂)

= ρ̂[x1 7→ [l1;min u1(u2 − 1)], x2 7→ [max(l1 + 1)l2;u2]]

(by def of t̂rue)

⊑̇ ρ̂′[x1 7→ [l1;min u1(u2 − 1)], x2 7→ [max(l1 + 1)l2;u2]]
(by assumption)

⊑̇ ρ̂′[x1 7→ [l′1;min u1(u2 − 1)], x2 7→ [max(l1 + 1)l2;u
′
2]]

(by above)

⊑̇ ρ̂′[x1 7→ [l′1;min u′
1(u

′
2 − 1)], x2 7→ [max(l1 + 1)l2;u

′
2]]

(by above)

⊑̇ ρ̂′[x1 7→ [l′1;min u′
1(u

′
2 − 1)], x2 7→ [max(l′1 + 1)l′2;u

′
2]]

(by above)

= t̂rue(x1 < x2, ρ̂
′) (by def of t̂rue)

Note: the following proof concerns f̂alse for the interval lattice.
For the parity lattice the proof is identical except for the last subcase
which is simpler, due to the simpler definition.

A.6 f̂alse monotone

Proof. By structural induction on b. Let ρ̂ ⊑̇ ρ̂′ be given.

case tt: By definition of f̂alse: f̂alse(tt, ρ̂) = ⊥ = f̂alse(tt, ρ̂′)

case ff: By definition of f̂alse: f̂alse(ff, ρ̂) = ρ̂ ⊑̇ ρ̂′ = f̂alse(ff, ρ̂′)

case x1 < x2: We consider each case of f̂alse:

subcase ρ̂ = ⊥ ∨ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥: By definition of

f̂alse:

f̂alse(x1 < x2, ρ̂) = ⊥ ⊑̇ f̂alse(x1 < x2, ρ̂
′)

subcase ρ̂(x1) = [l1;u1] ∧ ρ̂(x2) = [l2;u2]: By assumption
we have ρ̂(x1) = [l1;u1] ⊑ ρ̂′(x1) = [l′1;u

′
1] and

ρ̂(x2) = [l2;u2] ⊑ ρ̂′(x2) = [l′2;u
′
2]. Now:

f̂alse(x1 < x2, ρ̂)

= ρ̂[x1 7→ [max l1l2;u1], x2 7→ [l2;min u1u2]]

(by def of f̂alse)

⊑̇ ρ̂′[x1 7→ [max l1l2;u1], x2 7→ [l2;min u1u2]]
(by assumption)

⊑̇ ρ̂′[x1 7→ [max l1l2;u
′
1], x2 7→ [l′2;min u1u2]]

(by above)

⊑̇ ρ̂′[x1 7→ [max l′1l
′
2;u

′
1], x2 7→ [l′2;min u1u2]]

(by above)

⊑̇ ρ̂′[x1 7→ [max l′1l
′
2;u

′
1], x2 7→ [l′2;min u′

1u
′
2]]

(by above)

= f̂alse(x1 < x2, ρ̂
′) (by def of f̂alse)
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A.7 Moore family failure

Proof.

Assume for the sake of contradiction that {L(r) | r ∈ R̂A}
constitutes a Moore family:

1. It contains top:

L(⊤∗) = ∪i≥0L(⊤)
i

= ∪i≥0{c | c ∈ γ(⊤)}i = ∪i≥0{c | c ∈ C}i = C∗

2. But it is not closed under arbitrary intersection. In particular,
the result of the following infinite meet:

(even∗ · odd∗)

& (ǫ+ even · even∗ · odd∗ · odd)

& (ǫ+ even · odd + even · even · even∗ · odd∗ · odd · odd)

& . . .

is not in R̂A, contradicting our Moore family assumption.

A.8 Top is a valid analysis solution

Proof. By structural induction on sℓ. Let sℓ be given.

case skipℓ: Immediately holds since Ê⊤(ℓ) = (λx .⊤A,⊤
∗,⊤∗) =

X̂⊤(ℓ).

case x :=ℓe: Also holds since (âssign(ρ̂, x , Â(e, ρ̂)), ĥ, f̂) ⊑

(λx .⊤A,⊤
∗,⊤∗) = X̂⊤(ℓ) for any (ρ̂, ĥ, f̂) = Ê⊤(ℓ).

case sℓ11 ; sℓ22 : By the induction hypothesis Ê⊤, X̂⊤ � sℓ11 and

Ê⊤, X̂⊤ � sℓ22 and since Ê⊤(ℓ) = Ê⊤(ℓ1), X̂⊤(ℓ1) = Ê⊤(ℓ2),

and X̂⊤(ℓ2) = X̂⊤(ℓ) we have Ê⊤, X̂⊤ � sℓ11 ; sℓ22 .

case if bℓ then sℓ11 else sℓ22 : By the induction hypothesis Ê⊤, X̂⊤ �

sℓ11 and Ê⊤, X̂⊤ � sℓ22 and since X̂⊤(ℓ1) = X̂⊤(ℓ) = X̂⊤(ℓ2)

and (t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê⊤(ℓ1) and (f̂alse(b, ρ̂), ĥ, f̂) ⊑

Ê⊤(ℓ2) for any (ρ̂, ĥ, f̂) = Ê⊤(ℓ) we have Ê⊤, X̂⊤ �

if bℓ then sℓ11 else sℓ22 .

case while bℓ do sℓ11 end: By the induction hypothesis Ê⊤, X̂⊤ �

sℓ11 and since X̂⊤(ℓ1) = Ê⊤(ℓ) and (t̂rue(b, ρ̂), ĥ, f̂) ⊑

Ê⊤(ℓ1) and (f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂⊤(ℓ) for any (ρ̂, ĥ, f̂) =

Ê⊤(ℓ) we have Ê⊤, X̂⊤ � while bℓ do sℓ11 end.

case sℓ11 ⊕
ℓ sℓ22 : By the induction hypothesis Ê⊤, X̂⊤ � sℓ11 and

Ê⊤, X̂⊤ � sℓ22 and since X̂⊤(ℓ1) = X̂⊤(ℓ) = X̂⊤(ℓ2) and

Ê⊤(ℓ1) = Ê⊤(ℓ) = Ê⊤(ℓ2) we have Ê⊤, X̂⊤ � sℓ11 ⊕
ℓ sℓ22 .

case ch?ℓx : The right-hand-side of the implication (âssign(ρ̂, x , v̂), ĥ·

ch?v̂, D̂r̂epr([ch!v̂a])(f̂)) ⊑ X̂
⊤(ℓ) holds vacuously and there-

fore Ê⊤, X̂⊤ � ch?ℓx .

case ch!ℓe: The right-hand-side of the implication

(ρ̂, ĥ · ch!(v̂ ⊓ v̂′), D̂r̂epr([ch?v̂a])(f̂)) ⊑ X̂
⊤(ℓ)

holds vacuously and therefore Ê⊤, X̂⊤ � ch!ℓe.

case stopℓ: We have (⊥, ĥ, f̂) ⊑ X̂⊤(ℓ) for any (ρ̂, ĥ, f̂) =

Ê⊤(ℓ) and therefore Ê⊤, X̂⊤ � stop
ℓ.
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A.9 Meet preserves solutions

Proof. By structural induction on s. Let s, Ê , X̂ , Ê ′ , X̂ ′
be given.

and assume Ê , X̂ � s and Ê ′ , X̂ ′
� s.

case skipℓ: By assumption we have Ê (ℓ) ⊑ X̂ (ℓ) and Ê ′(ℓ) ⊑

X̂ ′(ℓ), but then Ê (ℓ) ⊓ Ê ′(ℓ) ⊑ X̂ (ℓ) and Ê (ℓ) ⊓ Ê ′(ℓ) ⊑

X̂ ′(ℓ). Since Ê (ℓ) ⊓ Ê ′(ℓ) is a lower bound of both X̂ (ℓ) and

X̂ ′(ℓ), it is less or equal to the greatest lower bound of the two:

Ê (ℓ) ⊓ Ê ′(ℓ) ⊑ X̂ (ℓ) ⊓ X̂ ′(ℓ).

case x :=ℓe: By assumption (âssign(ρ̂, x , Â(e, ρ̂)), ĥ, f̂) ⊑ X̂ (ℓ)

and (âssign(ρ̂′, x , Â(e, ρ̂′)), ĥ′, f̂ ′) ⊑ X̂ ′(ℓ) where (ρ̂, ĥ, f̂) =

Ê (ℓ) and (ρ̂′, ĥ′, f̂ ′) = Ê ′(ℓ). By monotonicity of Â we have

both Â(e, ρ̂ ⊓ ρ̂′) ⊑ Â(e, ρ̂) and Â(e, ρ̂ ⊓ ρ̂′) ⊑ Â(e, ρ̂′).

By the above and by the definition of âssign it now follows that

(âssign(ρ̂ ⊓ ρ̂′, x , Â(e, ρ̂ ⊓ ρ̂′)), ĥ& ĥ′, f̂ & f̂ ′)

⊑ (âssign(ρ̂, x , Â(e, ρ̂)), ĥ, f̂) ⊑ X̂ (ℓ)

and (âssign(ρ̂ ⊓ ρ̂′, x , Â(e, ρ̂ ⊓ ρ̂′)), ĥ& ĥ′, f̂ & f̂ ′)

⊑ (âssign(ρ̂′, x , Â(e, ρ̂′)), ĥ′, f̂ ′) ⊑ X̂ ′(ℓ)

As a consequence the left-hand-side is less or equal to the

greatest lower bound of the two right-hand-sides X̂ (ℓ)⊓X̂ ′(ℓ).
The meet thereby satisfies the analysis specification as it is

defined componentwise: (Ê ⊓ Ê ′)(ℓ) = Ê (ℓ) ⊓ Ê ′(ℓ) = (ρ̂ ⊓

ρ̂′, ĥ& ĥ′, f̂ & f̂ ′).

case s1 ; s2: By assumption we have Ê , X̂ � s1, Ê , X̂ � s2,

Ê ′ , X̂ ′
� s1, Ê ′ , X̂ ′

� s2, and X̂ (ℓ1) ⊑ Ê (first(s2)) and

X̂ ′(ℓ1) ⊑ Ê
′(first(s2)) for all ℓ1 ∈ last(s1). From the

first part it follows from the induction hypothesis that (Ê ⊓

Ê ′), (X̂ ⊓ X̂ ′) � s1, and (Ê ⊓ Ê ′), (X̂ ⊓ X̂ ′) � s2. From

the second part it follows that X̂ (ℓ1) ⊓ X̂
′(ℓ1) ⊑ Ê (first(s2))

and X̂ (ℓ1) ⊓ X̂
′(ℓ1) ⊑ Ê

′(first(s2)) for any ℓ1 ∈ last(s1).

Hence (X̂ ⊓ X̂ ′)(ℓ1) = X̂ (ℓ1) ⊓ X̂
′(ℓ1) ⊑ Ê (first(s2)) ⊓

Ê ′(first(s2)) = (Ê ⊓ Ê ′)(first(s2))

case if bℓ then s1 else s2: By assumption we have Ê , X̂ � s1,

Ê , X̂ � s2, Ê ′ , X̂ ′
� s1, and Ê ′ , X̂ ′

� s2. By two applications

of the induction hypothesis we therefore get (Ê ⊓ Ê ′), (X̂ ⊓

X̂ ′) � s1 and (Ê ⊓ Ê ′), (X̂ ⊓ X̂ ′) � s2.

By assumption we also have (t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s1)),

(f̂alse(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s2)), (t̂rue(b, ρ̂′), ĥ′, f̂ ′) ⊑

Ê ′(first(s1)), and (f̂alse(b, ρ̂′), ĥ′, f̂ ′) ⊑ Ê ′(first(s2)) where

(ρ̂, ĥ, f̂) = Ê (ℓ) and (ρ̂′, ĥ′, f̂ ′) = Ê ′(ℓ). By definition of ⊓

we have (Ê ⊓ Ê ′)(ℓ) = (ρ̂′ ⊓̇ ρ̂′, ĥ& ĥ′, f̂ & f̂ ′). Hence

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂) ⊑ Ê (first(s1))

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂) ⊑ Ê ′(first(s1))

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ Ê (first(s2))

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ Ê ′(first(s2))

by monotonicity of t̂rue and f̂alse and by the definition ⊓.
Since the left-hand-sides are lower bounds they are also less

or equal to the greatest lower bounds:

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂) ⊑ Ê (first(s1)) ⊓ Ê
′(first(s1))

= (Ê ⊓ Ê ′)(first(s1))

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ Ê (first(s2)) ⊓ Ê
′(first(s2))

= (Ê ⊓ Ê ′)(first(s2))

Finally by assumption we have X̂ (ℓ1) ⊑ X̂ (ℓ) and X̂ ′(ℓ1) ⊑

X̂ ′(ℓ) for all ℓ1 ∈ last(s1), and X̂ (ℓ2) ⊑ X̂ (ℓ) and X̂ ′(ℓ2) ⊑

X̂ ′(ℓ) for all ℓ2 ∈ last(s2). But that means

X̂ (ℓ1) ⊓ X̂
′(ℓ1) ⊑ X̂ (ℓ) and X̂ (ℓ1) ⊓ X̂

′(ℓ1) ⊑ X̂
′(ℓ)

X̂ (ℓ2) ⊓ X̂
′(ℓ2) ⊑ X̂ (ℓ) and X̂ (ℓ2) ⊓ X̂

′(ℓ2) ⊑ X̂
′(ℓ)

for any ℓ1 ∈ last(s1) and for any ℓ2 ∈ last(s2). Hence the
left-hand-sides are less or equal to the greatest lower bounds:

(X̂ ⊓ X̂ ′)(ℓ1) = X̂ (ℓ1) ⊓ X̂
′(ℓ1) ⊑ X̂ (ℓ) ⊓ X̂ ′(ℓ) = (X̂ ⊓ X̂ ′)(ℓ)

(X̂ ⊓ X̂ ′)(ℓ2) = X̂ (ℓ2) ⊓ X̂
′(ℓ2) ⊑ X̂ (ℓ) ⊓ X̂ ′(ℓ) = (X̂ ⊓ X̂ ′)(ℓ)

for any ℓ1 ∈ last(s1) and for any ℓ2 ∈ last(s2).

case while bℓ do s1 end: By assumption we have Ê , X̂ � s1 and

Ê ′ , X̂ ′
� s1, hence by the induction hypothesis we immediately

get (Ê ⊓ Ê ′), (X̂ ⊓ X̂ ′) � s1. By assumption we furthermore
have

(t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s1))

(t̂rue(b, ρ̂′), ĥ′, f̂ ′) ⊑ Ê ′(first(s1))

(f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂ (ℓ)

and (f̂alse(b, ρ̂′), ĥ′, f̂ ′) ⊑ X̂ ′(ℓ)

where (ρ̂, ĥ, f̂) = Ê (ℓ) and (ρ̂′, ĥ′, f̂ ′) = Ê ′(ℓ). But then

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (t̂rue(b, ρ̂), ĥ, f̂) ⊑ Ê (first(s1))

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (t̂rue(b, ρ̂′), ĥ′, f̂ ′) ⊑ Ê ′(first(s1))

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂ (ℓ)

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (f̂alse(b, ρ̂′), ĥ′, f̂ ′) ⊑ X̂ ′(ℓ)

by monotonicity of t̂rue and f̂alse . Hence the left-hand-sides
are less or equal to the greatest lower bound of the right-hand-
sides:

(t̂rue(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (Ê ⊓ Ê ′)(first(s1))

(f̂alse(b, ρ̂ ⊓̇ ρ̂′), ĥ& ĥ′, f̂ & f̂ ′) ⊑ (X̂ ⊓ X̂ ′)(ℓ)

where by definition (Ê ′ ⊓ Ê )(ℓ) = (ρ̂ ⊓̇ ρ̂′, ĥ& ĥ′, f̂ & f̂ ′).

Finally by assumption ∀ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ Ê (ℓ) and

∀ℓ1 ∈ last(s1). X̂
′(ℓ1) ⊑ Ê

′(ℓ). But then (X̂ ⊓ X̂
′
)(ℓ1) ⊑

Ê (ℓ) and (X̂ ⊓ X̂
′
)(ℓ1) ⊑ Ê

′(ℓ) and the left-hand-side is
therefore less or equal to the greatest lower bound of the right-

hand-sides: (X̂ ⊓X̂
′
)(ℓ1) ⊑ (Ê ⊓Ê ′)(ℓ) for any ℓ1 ∈ last(s1).

case s1 ⊕
ℓ s2: By assumption we have Ê , X̂ � s1, Ê , X̂ � s2,

Ê ′ , X̂ ′
� s1, and Ê ′ , X̂ ′

� s2. By two applications of the

induction hypothesis we therefore get (Ê ⊓ Ê ′), (X̂ ⊓ X̂ ′) � s1

and (Ê ⊓ Ê ′), (X̂ ⊓ X̂ ′) � s2. By assumption we furthermore

have Ê (ℓ) ⊑ Ê (first(s1)), Ê
′(ℓ) ⊑ Ê ′(first(s1)), Ê (ℓ) ⊑
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Ê (first(s2)), and Ê ′(ℓ) ⊑ Ê ′(first(s2)). But then

(Ê ⊓ Ê ′)(ℓ) ⊑ Ê (first(s1)) and (Ê ⊓ Ê ′)(ℓ) ⊑ Ê ′(first(s1))

(Ê ⊓ Ê ′)(ℓ) ⊑ Ê (first(s2)) and (Ê ⊓ Ê ′)(ℓ) ⊑ Ê ′(first(s2))

and hence

(Ê ⊓ Ê ′)(ℓ) ⊑ (Ê ⊓ Ê ′)(first(s1))

(Ê ⊓ Ê ′)(ℓ) ⊑ (Ê ⊓ Ê ′)(first(s2))

Finally by assumption X̂ (ℓ1) ⊑ X̂ (ℓ) and X̂ ′(ℓ1) ⊑ X̂
′(ℓ) for

all ℓ1 ∈ last(s1) and X̂ (ℓ2) ⊑ X̂ (ℓ) and X̂ ′(ℓ2) ⊑ X̂
′(ℓ) for

all ℓ2 ∈ last(s2). But that means

(X̂ ⊓ X̂ ′)(ℓ1) ⊑ X̂ (ℓ) and (X̂ ⊓ X̂ ′)(ℓ1) ⊑ X̂
′(ℓ)

(X̂ ⊓ X̂ ′)(ℓ2) ⊑ X̂ (ℓ) and (X̂ ⊓ X̂ ′)(ℓ2) ⊑ X̂
′(ℓ)

and as a consequence

(X̂ ⊓ X̂ ′)(ℓ1) ⊑ (X̂ ⊓ X̂ ′)(ℓ)

(X̂ ⊓ X̂ ′)(ℓ2) ⊑ (X̂ ⊓ X̂ ′)(ℓ)

for all ℓ1 ∈ last(s1) and for all ℓ2 ∈ last(s2).

case ch?ℓx : By assumption

• if ch!v̂ = p̂roject([ch!v̂a]) and D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅ then

(âssign(ρ̂, x , v̂), ĥ · ch?v̂, D̂r̂epr([ch!v̂a])(f̂)) ⊑ X̂ (ℓ) for

all [ch!v̂a] ∈ r̂ange(f̂) where (ρ̂, ĥ, f̂) = Ê (ℓ) and

• if ch!v̂′ = p̂roject([ch!v̂′a]) and D̂r̂epr([ch!v̂′
a
])(f̂

′) 6⊏∼ ∅

then (âssign(ρ̂′, x , v̂′), ĥ′ · ch?v̂′, D̂r̂epr([ch!v̂′
a
])(f̂

′)) ⊑

X̂ ′(ℓ) for all [ch!v̂′a] ∈ r̂ange(f̂ ′) where (ρ̂′, ĥ′, f̂ ′) =

Ê ′(ℓ).

Now let (Ê ⊓ Ê ′)(ℓ) = (ρ̂ ⊓̇ ρ̂′, ĥ& ĥ′, f̂ & f̂ ′) and let

[ch!v̂′′a ] ∈ r̂ange(f̂ & f̂ ′) = ̂overlay (r̂ange(f̂), r̂ange(f̂ ′))

be given, and assume that ch!v̂′′ = p̂roject([ch!v̂′′a ]) and

D̂r̂epr([ch!v̂′′
a
])(f̂ & f̂ ′)= D̂r̂epr([ch!v̂′′

a
])(f̂)& D̂r̂epr([ch!v̂′′

a
])(f̂

′)
6⊏∼∅.
Since

̂overlay (r̂ange(f̂), r̂ange(f̂ ′)) ⊑ r̂ange(f̂)

and ̂overlay (r̂ange(f̂), r̂ange(f̂ ′)) ⊑ r̂ange(f̂ ′)

under the refinement ordering there exists [ch!v̂a] ∈ r̂ange(f̂)

and [ch!v̂′a] ∈ r̂ange(f̂ ′) such that [ch!v̂′′a ] ⊑ [ch!v̂a] and
[ch!v̂′′a ] ⊑ [ch!v̂′a] under a sets-of-atoms ordering. Hence by

monotonicity of p̂roject ,

ch!v̂′′ ⊑ ch!v̂ = p̂roject([ch!v̂a])

and ch!v̂′′ ⊑ ch!v̂′ = p̂roject([ch!v̂′a])

Since D̂r̂epr([ch!v̂′′
a
])(f̂)& D̂r̂epr([ch!v̂′′

a
])(f̂

′) 6⊏∼ ∅ we have

both D̂r̂epr([ch!v̂′′
a
])(f̂) 6⊏∼ ∅ and D̂r̂epr([ch!v̂′′

a
])(f̂

′) 6⊏∼ ∅.
Furthermore, by the definition of the partition being com-

puted we have D̂r̂epr([ch!v̂a])(f̂) = D̂r̂epr([ch!v̂′′
a
])(f̂) and

D̂r̂epr([ch!v̂′
a
])(f̂

′) = D̂r̂epr([ch!v̂′′
a
])(f̂

′) and therefore deduce

D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅ and D̂r̂epr([ch!v̂′
a
])(f̂

′) 6⊏∼ ∅. But then

(âssign(ρ̂, x , v̂), ĥ · ch?v̂, D̂r̂epr([ch!v̂a])(f̂)) ⊑ X̂ (ℓ) and

(âssign(ρ̂′, x , v̂′), ĥ′ · ch?v̂′, D̂r̂epr([ch!v̂′
a
])(f̂

′)) ⊑ X̂ ′(ℓ) by

our assumption. Hence

âssign(ρ̂ ⊓̇ ρ̂′, x , v̂′′) ⊑̇ âssign(ρ̂, x , v̂′′) ⊑̇ âssign(ρ̂, x , v̂)

âssign(ρ̂ ⊓̇ ρ̂′, x , v̂′′) ⊑̇ âssign(ρ̂′, x , v̂′′) ⊑̇ âssign(ρ̂′, x , v̂′)

(ĥ& ĥ′) · ch?v̂′′ ⊏∼ ĥ · ch?v̂′′ ⊏∼ ĥ · ch?v̂

(ĥ& ĥ′) · ch?v̂′′ ⊏∼ ĥ′ · ch?v̂′′ ⊏∼ ĥ′ · ch?v̂′

and since

D̂r̂epr([ch!v̂′′
a
])(f̂ & f̂ ′) = D̂r̂epr([ch!v̂′′

a
])(f̂)& D̂r̂epr([ch!v̂′′

a
])(f̂

′)

we furthermore have

D̂r̂epr([ch!v̂′′
a
])(f̂ & f̂ ′) ⊏∼ D̂r̂epr([ch!v̂′′

a
])(f̂) = D̂r̂epr([ch!v̂a])(f̂)

D̂r̂epr([ch!v̂′′
a
])(f̂ & f̂ ′) ⊏∼ D̂r̂epr([ch!v̂′′

a
])(f̂

′) = D̂r̂epr([ch!v̂′
a
])(f̂

′)

Finally we therefore have

(âssign(ρ̂ ⊓̇ ρ̂′, x , v̂′′), (ĥ&ĥ′)·ch?v̂′′, D̂r̂epr([ch!v̂′′
a
])(f̂&f̂ ′))⊑X̂ (ℓ)

(âssign(ρ̂ ⊓̇ ρ̂′, x , v̂′′), (ĥ&ĥ′)·ch?v̂′′, D̂r̂epr([ch!v̂′′
a
])(f̂&f̂ ′))⊑X̂ ′(ℓ)

and hence by the definition of the greatest lower bound:

(âssign(ρ̂ ⊓̇ ρ̂′, x , v̂′′), (ĥ&ĥ′)·ch?v̂′′, D̂r̂epr([ch!v̂′′
a
])(f̂&f̂ ′))

⊑ (X̂ ⊓X̂ ′)(ℓ)

case ch!ℓe: By assumption

• If ch?v̂ = p̂roject([ch?v̂a]) and v̂⊓v̂′ 6=⊥ and D̂r̂epr([ch?v̂a])(f̂)

6⊏∼ ∅ then (ρ̂, ĥ · ch!(v̂ ⊓ v̂′), D̂r̂epr([ch?v̂a])(f̂)) ⊑ X̂ (ℓ)

for all [ch?v̂a] ∈ r̂ange(f̂) where (ρ̂, ĥ, f̂) = Ê (ℓ) and

v̂′ = Â(e, ρ̂) and

• If ch?v̂′′ = p̂roject([ch?v̂′a]) and v̂′′ ⊓ v̂′′′ 6= ⊥ and

D̂r̂epr([ch?v̂′
a
])(f̂

′) 6⊏∼∅ then (ρ̂′, ĥ′·ch!(v̂′′⊓v̂′′′), D̂r̂epr([ch?v̂′
a
])(f̂

′))

⊑ X̂ ′(ℓ) for all [ch?v̂′a] ∈ r̂ange(f̂ ′) where (ρ̂′, ĥ′, f̂ ′) =

Ê ′(ℓ) and v̂′′′ = Â(e, ρ̂′)

By definition (Ê ⊓ Ê ′)(ℓ) = (ρ̂ ⊓̇ ρ̂′, ĥ& ĥ′, f̂ & f̂ ′). By

monotonicity of Â we have v̂Â = Â(e, ρ̂ ⊓̇ ρ̂′) ⊑ Â(e, ρ̂) =

v̂′ and v̂Â ⊑ Â(e, ρ̂
′) = v̂′′′. Let [ch?v̂′′a ] ∈ r̂ange(f̂ & f̂ ′) =

̂overlay (r̂ange(f̂), r̂ange(f̂ ′)) be given. By definition of the

lower bound computed by ̂overlay and the refinement order
of partitions, this means that there exists equivalence classes
[ch?v̂a] and [ch?v̂′a] such that

[ch?v̂′′a ] ⊑ [ch?v̂a] ∈ r̂ange(f̂)

[ch?v̂′′a ] ⊑ [ch?v̂′a] ∈ r̂ange(f̂ ′)

under a set-of-atoms ordering. These equivalence classes are
unique, as no two equivalence classes of a partition overlap.

Assume ch?v̂p = p̂roject([ch?v̂′′a ]) and v̂p ⊓ v̂Â 6= ⊥ and

D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′) = D̂r̂epr([ch?v̂′′

a
])(f̂)& D̂r̂epr([ch?v̂′′

a
])(f̂

′)

6⊏∼∅. By monotonicity of p̂roject we get ch?v̂p ⊑ p̂roject([ch?v̂a])

= ch?v̂ and ch?v̂p ⊑ p̂roject([ch?v̂′a]) = ch?v̂′′ and there-
fore both v̂p ⊓ v̂Â ⊑ v̂⊓ v̂′ 6= ⊥ and v̂p ⊓ v̂Â ⊑ v̂′′ ⊓ v̂′′′ 6= ⊥.

Furthermore D̂r̂epr([ch?v̂′′
a
])(f̂) 6⊏∼ ∅ and D̂r̂epr([ch?v̂′′

a
])(f̂

′) 6⊏∼
∅. and therefore D̂r̂epr([ch?v̂a])(f̂) 6⊏∼ ∅ and D̂r̂epr([ch?v̂′

a
])(f̂

′)
6⊏∼∅ by the definition of the partition being computed. As a con-

sequence (ρ̂, ĥ · ch!(v̂ ⊓ v̂′), D̂r̂epr([ch?v̂a])(f̂)) ⊑ X̂ (ℓ) and

(ρ̂′, ĥ′ · ch!(v̂′′ ⊓ v̂′′′), D̂r̂epr([ch?v̂′
a
])(f̂

′)) ⊑ X̂ ′(ℓ). But then

(ĥ& ĥ′) · ch!(v̂p ⊓ v̂Â) ⊏∼ ĥ · ch!(v̂p ⊓ v̂Â) ⊏∼ ĥ · ch!(v̂ ⊓ v̂′)

(ĥ& ĥ′) · ch!(v̂p ⊓ v̂Â) ⊏∼ ĥ′ · ch!(v̂p ⊓ v̂Â) ⊏∼ ĥ · ch!(v̂′′ ⊓ v̂′′′)
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and furthermore

D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′) = D̂r̂epr([ch?v̂′′

a
])(f̂)& D̂r̂epr([ch?v̂′′

a
])(f̂

′)

⊏∼ D̂r̂epr([ch?v̂′′
a
])(f̂) = D̂r̂epr([ch?v̂a])(f̂)

D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′) ⊏∼ D̂r̂epr([ch?v̂′′

a
])(f̂

′) = D̂r̂epr([ch?v̂′
a
])(f̂

′)

and therefore

(ρ̂ ⊓̇ ρ̂′, (ĥ& ĥ′) · ch!(v̂p ⊓ v̂Â), D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′)) ⊑ X̂ (ℓ)

(ρ̂ ⊓̇ ρ̂′, (ĥ& ĥ′) · ch!(v̂p ⊓ v̂Â), D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′)) ⊑ X̂ ′(ℓ)

and hence

(ρ̂ ⊓̇ ρ̂′, (ĥ& ĥ′) · ch!(v̂p ⊓ v̂Â), D̂r̂epr([ch?v̂′′
a
])(f̂ & f̂ ′))

⊑ (X̂ ⊓ X̂ ′)(ℓ)

case stopℓ: By assumption (⊥, ĥ, f̂) ⊑ X̂ (ℓ) and (⊥, ĥ′, f̂ ′) ⊑

X̂ ′(ℓ) where (ρ̂, ĥ, f̂) = Ê (ℓ) and (ρ̂′, ĥ′, f̂ ′) = Ê ′(ℓ). But

then (⊥, ĥ& ĥ′, f̂ & f̂ ′) ⊑ X̂ (ℓ) and (⊥, ĥ& ĥ′, f̂ & f̂ ′) ⊑

X̂ ′(ℓ). As a consequence (⊥, ĥ& ĥ′, f̂ & f̂ ′) ⊑ (X̂ ⊓ X̂ ′)(ℓ)

where (Ê ⊓ Ê ′)(ℓ) = (ρ̂ ⊓̇ ρ̂′, ĥ& ĥ′, f̂ & f̂ ′).

B. Soundness proofs

B.1 αst , γst is a Galois insertion

Proof.

αst monotone: Let S ⊆ S′ be given. If S = ∅ then αst (S) ⊑̇ αst (S
′)

for any S′. If S 6= ∅ then S′ 6= ∅ by assumption. Hence

αst (S)

= λx . αv({ρ(x) | ρ ∈ S ∧ ρ(x) defined})
(by def. of αst )

⊑̇ λx . αv({ρ(x) | ρ ∈ S′ ∧ ρ(x) defined})
(by monotonicity of αv)

= αst (S
′) (by def. of αst )

γst monotone: Let ρ̂ ⊑̇ ρ̂′ be given. If ρ̂ = ⊥ then γst(ρ̂) = ∅ ⊆
γst(ρ̂

′) for any ρ̂′. If ρ̂ 6= ⊥ then ρ̂′ 6= ⊥ by assumption. Hence

γst (ρ̂)

= {ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ γv(ρ̂(x))}
(by def. of γst )

⊆ {ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ γv(ρ̂
′(x))}

(by mononicity of γv)

= γst(ρ̂) (by def. of γst )

γst ◦ αst extensive: Let S be given. If S = ∅ then γst (αst(S)) =
γst(⊥) = ∅. If S 6= ∅ then

S

⊆ {ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ {ρ(x) | ρ ∈ S

∧ ρ(x) defined}}
(upward judgement)

⊆ {ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ γv(αv({ρ(x) | ρ ∈ S

∧ ρ(x) defined}))}
(γv ◦ αv extensive)

= γst (λx . αv({ρ(x) | ρ ∈ S ∧ ρ(x) defined}))
(by def. of γst )

= γst (αst(S)) (by def. of αst )

αst ◦ γst identity: Let ρ̂ be given. If ρ̂ = ⊥ then αst (γst(ρ̂)) =
αst (∅) = ⊥. If ρ̂ 6= ⊥ then

αst (γst(ρ̂))

= αst ({ρ | ∀x . ρ(x) undefined ∨ ρ(x) ∈ γv(ρ̂(x))})
(by def. of γst )

= λx . αv({ρ(x) | ρ ∈ {ρ | ∀x
′. ρ(x ′) undefined

∨ ρ(x ′) ∈ γv(ρ̂(x
′))} ∧ ρ(x) defined})

(by def. of αst )

= λx . αv(γv(ρ̂(x))) (simplify)

= λx . ρ̂(x) (αv ◦ γv identity)

B.2 Soundness of Â

Proof. By structural induction on e. Let e ∈ E, ρ̂ ∈ Ŝtore be
given.
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case n:

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A n ⇓ v})

= αv({n | ρ ∈ γst (ρ̂) ∧ ρ ⊢A n ⇓ n}) (by rule LIT)

= αv({n | ρ ∈ γst (ρ̂)}) (simplify)

⊑ αv({n}) (αv monotone)

= Â(n, ρ̂) (by def. of Â)

case x :

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A x ⇓ v})

= αv({ρ(x) | ρ ∈ γst(ρ̂) ∧ ρ ⊢A x ⇓ ρ(x)})
(by rule VAR)

= αv({ρ(x) | ρ ∈ γst(ρ̂)}) (simplify)

=

{
αv(∅) ρ̂ = ⊥

αv(γv(ρ̂(x))) ρ̂ 6= ⊥
(case analysis)

=

{
⊥ ρ̂ = ⊥

ρ̂(x) ρ̂ 6= ⊥
(Galois insertion, strict γv)

= Â(x , ρ̂) (by def. of Â)

case ?:

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A ? ⇓ v})

= αv({v | ρ ∈ γst (ρ̂) ∧ ρ ⊢A ? ⇓ v}) (by rule ANY)

= αv({v | ρ ∈ γst (ρ̂)}) (simplify)

⊑ ⊤ (by def. of ⊤)

= Â(?, ρ̂) (by def. of Â)

case e1 + e2:

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 + e2 ⇓ v})

= αv({v1 + v2 | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 ⇓ v1 ∧ ρ ⊢A e2 ⇓ v2})
(by rule ADD)

⊑ αv({v1 + v2 | v1 ∈ {v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 ⇓ v} ∧

v2 ∈ {v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e2 ⇓ v}})
(αv monotone)

⊑ αv({v1 + v2 | v1 ∈ γv(Â(e1, ρ̂)) ∧ v2 ∈ γv(Â(e2, ρ̂))})
(by the IH, Galois connection)

⊑ Â(e1, ρ̂) +̂ Â(e2, ρ̂) (by +̂ soundness)

= Â(e1 + e2, ρ̂) (by def. of Â)

case e1 − e2:

αv({v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 − e2 ⇓ v})

= αv({v1 − v2 | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 ⇓ v1 ∧ ρ ⊢A e2 ⇓ v2})
(by rule ADD)

⊑ αv({v1 − v2 | v1 ∈ {v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e1 ⇓ v} ∧

v2 ∈ {v | ρ ∈ γst(ρ̂) ∧ ρ ⊢A e2 ⇓ v}})
(αv monotone)

⊑ αv({v1 − v2 | v1 ∈ γv(Â(e1, ρ̂)) ∧ v2 ∈ γv(Â(e2, ρ̂))})
(by the IH, Galois connection)

⊑ Â(e1, ρ̂) −̂ Â(e2, ρ̂) (by −̂ soundness)

= Â(e1 − e2, ρ̂) (by def. of Â)

B.3 Soundness of âssign

Proof. Let ρ̂, x , v̂ be given. If γv(v̂) = ∅ or γst(ρ̂) = ∅ the left-
hand-side is⊥ and hence the result follows immediately. Therefore

assume γv(v̂) 6= ∅ and γst(ρ̂) 6= ∅. To argue for pointwise
inclusion, we prove inclusion for a given variable y . Let a y be
given.

αst ({ρ[x 7→ v] | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂)})(y)

= αv({ρ[x 7→ v](y) | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂) ∧ ρ[x 7→ v](y) defined})
(by def. of αst )

case y = x :

αv({ρ[x 7→ v](y) | v ∈ γv(v̂) ∧ ρ ∈ γst (ρ̂) ∧ ρ[x 7→ v](y) defined})

= αv({v | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂)}) (by y = x )

= αv(γv(v̂)) (γv(v̂) 6= ∅, γst(ρ̂) 6= ∅)

= v̂ (Galois insertion)

= âssign(ρ̂, x , v̂)(y) (by def. of âssign)

case y 6= x :

αv({ρ[x 7→ v](y) | v ∈ γv(v̂) ∧ ρ ∈ γst (ρ̂) ∧ ρ[x 7→ v](y) defined})

= αv({ρ(y) | v ∈ γv(v̂) ∧ ρ ∈ γst(ρ̂) ∧ ρ(y) defined})
(by y 6= x )

= αv({ρ(y) | ρ ∈ γst(ρ̂) ∧ ρ(y) defined}) (γv(v̂) 6= ∅)

= αst (γst(ρ̂))(y) (by def. of αst )

= ρ̂(y) (Galois insertion)

= âssign(ρ̂, x , v̂)(y) (by def. of âssign)

B.4 Soundness of generic t̂rue and f̂alse

Proof. By structural induction on b. Let b ∈ B, ρ̂ ∈ Ŝtore be given.

case tt:

αst (true(tt, γst (ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B tt ⇓ tt}) (by def. of true)

= αst ({ρ ∈ γst(ρ̂)}) (by rule TRUE)

= ρ̂ (Galois insertion)

= t̂rue(tt, ρ̂) (by def. of t̂rue)

αst (false(tt, γst (ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B tt ⇓ ff}) (by def. of false)

= αst (∅) (no rules apply)

= ⊥ (by def. of αst )

= f̂alse(tt, ρ̂) (by def. of f̂alse)

case ff:

αst (true(ff, γst (ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B ff ⇓ tt}) (by def. of true)

= αst (∅) (no rules apply)

= ⊥ (by def. of αst )

= t̂rue(ff, ρ̂) (by def. of t̂rue)

αst (false(ff, γst (ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B ff ⇓ ff}) (by def. of false)

= αst ({ρ ∈ γst(ρ̂)}) (by rule FALSE)

= ρ̂ (Galois insertion)

= f̂alse(ff, ρ̂) (by def. of f̂alse)
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case x1 < x2:

αst (true(x1 < x2, γst(ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B x1 < x2 ⇓ tt}) (by def. of true)

= αst ({ρ ∈ γst(ρ̂) | ρ(x1) < ρ(x2)})
(by rule LESSTHAN1)

⊑̇ αst ({ρ ∈ γst (ρ̂) | ρ̂(x1) 6= ⊥ ∧ ρ̂(x2) 6= ⊥})
(γv strict, αst monotone)

=

{
⊥ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂ otherwise
(by def. of αst )

αst (false(x1 < x2, γst(ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B x1 < x2 ⇓ ff})
(by def. of false)

= αst ({ρ ∈ γst(ρ̂) | ρ(x1) ≥ ρ(x2)})
(by rule LESSTHAN2)

⊑̇ αst ({ρ ∈ γst (ρ̂) | ρ̂(x1) 6= ⊥ ∧ ρ̂(x2) 6= ⊥})
(γv strict, αst monotone)

=

{
⊥ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂ otherwise
(by def. of αst )

B.5 Soundness of t̂rue and f̂alse for intervals

Proof. By structural induction on b. Let b ∈ B, ρ̂ ∈ Ŝtore be given.
The cases for tt and ff are identical to those for parity and so is
the proof.

case x1 < x2:

αst (true(x1 < x2, γst(ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B x1 < x2 ⇓ tt}) (by def. of true)

= αst ({ρ ∈ γst(ρ̂) | ρ(x1) < ρ(x2)})
(by rule LESSTHAN1)

= αst ({ρ ∈ γst(ρ̂) | l1 ≤ v1 = ρ(x1) ≤ u1 ∧

l2 ≤ v2 = ρ(x2) ≤ u2 ∧ v1 < v2})
(by def. of γst )

⊑̇ αst ({ρ ∈ γst (ρ̂) | l1 ≤ v1 = ρ(x1) ≤ (minu1(u2 − 1)) ∧

(max(l1 + 1)l2) ≤ v2 = ρ(x2) ≤ u2})
(by def. of <, ≤)

⊑̇ αst ({ρ ∈ γst (ρ̂[x1 7→ [l1;u
′
1], x2 7→ [l′2;u2]]) | ρ̂(xi) = [li;ui]

∧ u′
1 = minu1(u2 − 1) ∧ l′2 = max(l1 + 1)l2})

(αst monotone, ρ(xi) pot. undefined)

=





⊥ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l1;u
′
1], x2 7→ [l′2;u2]] ρ̂(xi) = [li;ui] ∧

u′
1 = min u1(u2 − 1) ∧

l′2 = max(l1 + 1)l2
(by def. of αst )

αst (false(x1 < x2, γst(ρ̂)))

= αst ({ρ ∈ γst(ρ̂) | ρ ⊢B x1 < x2 ⇓ ff})
(by def. of false)

= αst ({ρ ∈ γst(ρ̂) | ρ(x1) ≥ ρ(x2)})
(by rule LESSTHAN2, Galois insertion)

= αst ({ρ ∈ γst(ρ̂) | l1 ≤ v1 = ρ(x1) ≤ u1 ∧

l2 ≤ v2 = ρ(x2) ≤ u2 ∧ v1 ≥ v2})
(by def. of γst )

⊑̇ αst ({ρ ∈ γst (ρ̂) | (maxl1l2) ≤ v1 = ρ(x1) ≤ u1 ∧

l2 ≤ v2 = ρ(x2) ≤ (minu1u2)})
(by def. of <, ≤)

⊑̇ αst ({ρ ∈ γst (ρ̂[x1 7→ [l′1;u1], x2 7→ [l2;u
′
2]]) | ρ̂(xi) = [li;ui]

∧ l′1 = max l1l2 ∧ u′
2 = min u1u2})

(αst monotone, ρ(xi) pot. undefined)

=





⊥ ρ̂(x1) = ⊥ ∨ ρ̂(x2) = ⊥

ρ̂[x1 7→ [l′1;u1], x2 7→ [l2;u
′
2]] ρ̂(xi) = [li;ui] ∧

l′1 = max l1l2 ∧
u′
2 = min u1u2

(by def. of αst )

B.6 Soundness of instrumented semantics

Proof. By induction over the length of the trace.

n = 1: If c1 ‖ c1 for some initial state c1 ‖ c1 = 〈sℓ11 , ρ1〉 ‖

〈s1
ℓ1 , ρ1〉 then there exists an instrumented initial state ic1 ‖

ic1 = 〈sℓ11 , ρ1, ǫ〉 ‖ 〈s
ℓ1
1 , ρ1, ǫ〉 and by definition 〈sℓ11 , ρ1〉, ǫ =

proj (〈sℓ11 , ρ1, ǫ〉) ∧ 〈sℓ11 , ρ1〉, ǫ = proj (〈sℓ11 , ρ1, ǫ〉) and
clearly ǫ = ǫ ∧ ǫ = ǫ.

n = k + 1: Let a trace c1 ‖ c1
α1,β1

=⇒ c2 ‖ c2
α2,β2

=⇒ · · ·
αk,βk

=⇒
ck+1 ‖ ck+1 from some initial state c1 ‖ c1 = 〈sℓ11 , ρ1〉 ‖

〈sℓ11 , ρ1〉 be given. By the induction hypothesis there exists an
instrumented trace ic1 ‖ ic1 =⇒ ic2 ‖ ic2 =⇒ . . . =⇒ ick ‖
ick such that

ci, hi = proj (ici) ∧ ci, hi = proj (ici) i ∈ {1, . . . , k}

∧ α1α2 . . . αk−1 = hk ∧ β1β2 . . . βk−1 = hk

We need to show that there exists ick+1 ‖ ick+1 such that
ick ‖ ick =⇒ ick+1 ‖ ick+1 and

ck+1, hk+1 = proj (ick+1) ∧ ck+1, hk+1 = proj (ick+1)

∧ α1α2 . . . αk = hk+1 ∧ β1β2 . . . βk = hk+1

We proceed by case analysis on the last step of the trace ck ‖

ck
αk,βk

=⇒ ck+1 ‖ ck+1.

case SYSLEFT: Then 〈sℓkk , ρk〉 ‖ ck
τ,ǫ

=⇒ ck+1 ‖ ck for some

〈sℓkk , ρk〉
τ
−→ ck+1. By Lemma 7.5 〈sℓkk , ρk, hk〉

τ
−→

ick+1 such that ck+1, (hk·τ ) = ck+1, hk+1 = proj (ick+1).

Hence by rule ISYSLEFT we have 〈sℓkk , ρk, hk〉 ‖ ick =⇒
ick+1 ‖ ick. By the induction hypothesis ck+1, hk+1 =
ck, hk = proj (ick) = proj (ick+1). Sinceα1α2 . . . αk−1 =
hk ∧ β1β2 . . . βk−1 = hk and αk = τ and βk = ǫ then
α1α2 . . . αk−1αk = hk·τ = hk+1 and β1β2 . . . βk−1βk =
hk · ǫ = hk = hk+1.

case SYSRIGHT: The argument is symmetric to that of SYSLEFT.
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case SYSWR: Then 〈sℓkk , ρk〉 ‖ 〈s
ℓk
k , ρk〉

ch!v,ch?v
=⇒ ck+1 ‖

ck+1 and 〈sℓkk , ρk〉
ch!v
−→ ck+1 and 〈sℓkk , ρk〉

ch?v
−→ ck+1.

Hence by two applications of Lemma 7.5 we get 〈sℓkk , ρk, hk〉
ch!v
−→

ick+1 and 〈sℓkk , ρk, hk〉
ch?v
−→ ick+1. and ck+1, (hk ·

ch!v) = proj (ick+1) and ck+1, (hk·ch?v) = proj (ick+1).

By rule ISYSWR we therefore have 〈sℓkk , ρk, hk〉 ‖ 〈s
ℓk
k , ρk, hk〉

=⇒ ck+1 ‖ ck+1. Furthermore by the induction hy-

pothesis we have that ci, hi = proj (ici) ∧ ci, hi =
proj (ici) for all i ∈ {1, . . . , k} and α1α2 . . . αk−1 =
hk ∧ β1β2 . . . βk−1 = hk and thereforeα1α2 . . . αk−1ch!v
= hk · ch!v = hk+1 ∧ β1β2 . . . βk−1ch?v = hk · ch?v =
hk+1.

case SYSRW: The argument is symmetric to that of SYSWR.

B.7 Process step soundness

Proof. By structural induction on sℓ. Let sℓ, ρ, and h be given.

Assume 〈sℓ, ρ〉, h = proj (〈sℓ, ρ, h〉) and 〈sℓ, ρ〉
α
−→ c.

case skipℓ: 〈skipℓ, ρ〉, h = proj (〈skipℓ, ρ, h〉) and 〈skipℓ, ρ〉
τ
−→

c by rule SKIP. By rule ISKIP 〈skipℓ, ρ, h〉
τ
−→ 〈ρ, h · τ 〉 and

ρ, (h · τ ) = proj (〈ρ, h · τ 〉).

case x :=ℓe: 〈x :=ℓe, ρ〉, h = proj (〈x :=ℓe, ρ, h〉) and 〈x :=ℓe, ρ〉
τ
−→

ρ[x 7→ v] by rule ASSIGN for some v where e ⊢A ρ ⇓ v. But

then by rule IASSIGN 〈x :=ℓe, ρ, h〉
τ
−→ 〈ρ[x 7→ v], h · τ 〉

and ρ[x 7→ v], (h · τ ) = proj (〈ρ[x 7→ v], h · τ〉).

case sℓ11 ; sℓ22 : 〈sℓ11 ; sℓ22 , ρ〉, h = proj (〈sℓ11 ; sℓ22 , ρ, h〉) and 〈sℓ11 ; sℓ22 , ρ〉
α
−→ c by either rule SEQ1 or by rule SEQ2.

subcase SEQ1: In this case we have that 〈sℓ11 , ρ〉
α
−→ 〈sℓ33 , ρ′〉

and 〈sℓ11 ; sℓ22 , ρ〉
α
−→ 〈sℓ33 ; sℓ22 , ρ′〉. But then 〈sℓ11 , ρ〉, h =

proj (〈sℓ11 , ρ, h〉) and therefore 〈sℓ11 , ρ, h〉
α
−→ 〈sℓ33 , ρ′, h · α〉

by the induction hypothesis. Hence by rule ISEQ1 〈sℓ11 ; sℓ22 , ρ, h〉
α
−→ 〈sℓ33 ; sℓ22 , ρ′, h · α〉 and 〈sℓ33 ; sℓ22 , ρ′〉, (h · α) =
proj (〈sℓ33 ; sℓ22 , ρ′, h · α〉).

subcase SEQ2: In this case we have that 〈sℓ11 , ρ〉
α
−→ ρ′

and 〈sℓ11 ; sℓ22 , ρ〉
α
−→ 〈sℓ22 , ρ′〉. But then 〈sℓ11 , ρ〉, h =

proj (〈sℓ11 , ρ, h〉) and therefore 〈sℓ11 , ρ, h〉
α
−→ 〈ρ′, h · α〉

by the induction hypothesis. Hence by rule ISEQ2 〈sℓ11 ; sℓ22 , ρ, h〉
α
−→ 〈sℓ22 , ρ′, h · α〉 and 〈sℓ22 , ρ′〉, (h·α) = proj (〈sℓ22 , ρ′, h · α〉).

case if bℓ then sℓ11 else sℓ22 : 〈if bℓ then sℓ11 else sℓ22 , ρ〉, h =
proj (〈if bℓ then sℓ11 else sℓ22 , ρ, h〉) and 〈if bℓ then sℓ11 else sℓ22 , ρ〉
α
−→ c by either rule IF1 or by rule IF2.

subcase IF1: Then b ⊢B ρ ⇓ tt and 〈if bℓ then sℓ11 else sℓ22 , ρ〉
τ
−→ 〈sℓ11 , ρ〉. But then 〈if bℓ then sℓ11 else sℓ22 , ρ, h〉

τ
−→

〈sℓ11 , ρ, h · τ 〉 by rule IIF1 and 〈sℓ11 , ρ〉, (h·τ ) = proj (〈sℓ11 , ρ, h · τ〉).

subcase IF2: Then b ⊢B ρ ⇓ ff and 〈if bℓ then sℓ11 else sℓ22 , ρ〉
τ
−→ 〈sℓ22 , ρ〉. But then 〈if bℓ then sℓ11 else sℓ22 , ρ, h〉

τ
−→

〈sℓ22 , ρ, h · τ 〉 by rule IIF2 and 〈sℓ22 , ρ〉, (h·τ ) = proj (〈sℓ22 , ρ, h · τ〉).

case while bℓ do sℓ11 end:

〈while bℓ do sℓ11 end, ρ〉, h = proj (〈while bℓ do sℓ11 end, ρ, h〉)

and 〈while bℓ do sℓ11 end, ρ〉
τ
−→ c by either rule WHILE1 or

by rule WHILE2.

subcase WHILE1: Then b ⊢B ρ ⇓ tt and 〈while bℓ do sℓ11 end, ρ〉
τ
−→ 〈sℓ11 ; while bℓ do sℓ11 end, ρ〉. But then we have

〈while bℓ do sℓ11 end, ρ, h〉
τ
−→〈sℓ11 ; while bℓ do sℓ11 end, ρ, h·τ 〉

by rule IWHILE1 and 〈sℓ11 ; while bℓ do sℓ11 end, ρ〉, (h ·
τ ) = proj (〈sℓ11 ; while bℓ do sℓ11 end, ρ, h · τ〉).

subcase WHILE2: Then b ⊢B ρ ⇓ ff and 〈while bℓ do sℓ11 end, ρ〉
τ
−→ ρ. But then 〈while bℓ do sℓ11 end, ρ, h〉

τ
−→ 〈ρ, h · τ〉

by rule IWHILE2 and ρ, (h · τ ) = proj (〈ρ, h · τ 〉).

case sℓ11 ⊕
ℓ sℓ22 : 〈sℓ11 ⊕

ℓ sℓ22 , ρ〉, h = proj (〈sℓ11 ⊕
ℓ sℓ22 , ρ, h〉)

and 〈sℓ11 ⊕
ℓ sℓ22 , ρ〉

α
−→ c by either rule CHOICE1 or by rule

CHOICE2.

subcase CHOICE1: In this case we have that 〈sℓ11 , ρ〉
α
−→

c1 and 〈sℓ11 ⊕
ℓ sℓ22 , ρ〉

α
−→ c1. But then 〈sℓ11 , ρ〉, h =

proj (〈sℓ11 , ρ, h〉) and therefore 〈sℓ11 , ρ, h〉
α
−→ ic1 and

c1, (h · α) = proj (ic1) by the induction hypothesis. Hence

〈sℓ11 ⊕
ℓ sℓ22 , ρ, h〉

α
−→ ic1 by rule ICHOICE1.

subcase CHOICE2: Symmetric to CHOICE1.

case ch?ℓx : 〈ch?ℓx , ρ〉, h = proj (〈ch?ℓx , ρ, h〉) and 〈ch?ℓx , ρ〉
ch?v
−→ ρ[x 7→ v] by rule READ for some v. But then by rule

IREAD 〈ch?ℓx , ρ, h〉
ch?v
−→ 〈ρ[x 7→ v], h · ch?v〉 and ρ[x 7→

v], (h · ch?v) = proj (〈ρ[x 7→ v], h · ch?v〉).

case ch!ℓe: 〈ch!ℓe, ρ〉, h = proj (〈ch!ℓe, ρ, h〉) and 〈ch!ℓe, ρ〉
ch!v
−→

ρ by rule WRITE for some v such that ρ ⊢A e ⇓ v. But

then by rule IWRITE 〈ch!ℓe, ρ, h〉
ch!v
−→ 〈ρ, h · ch!v〉 and

ρ, (h · ch!v) = proj (〈ρ, h · ch!v〉).

case stop: Vacuously true as no rule matches 〈stop, ρ〉
α
−→ c.

B.8 Decoupling a system trace

Proof. By induction on the length of the trace.

case n = 1: Clearly we can decouple ic1 ‖ ic1 into two traces ic1
and ic1.

case n = k + 1: Assume we are given a system trace: ic1 ‖
ic1 =⇒ ic2 ‖ ic2 =⇒ . . . =⇒ ick ‖ ick =⇒ ick+1 ‖ ick+1.
By the induction hypothesis we can decouple the first k states of

the trace into two process traces ic1
α1−→ ic2

α2−→ . . .
αk−1

−→ ick

and ic1
β1−→ ic2

β2−→ . . .
βk−1

−→ ick.
We now proceed by case analysis on the last step.

subcase ISYSLEFT: Then ick = 〈s1, ρ1, h1〉
τ
−→ ick+1 and

ick = ick+1. But then ic1
α1−→ ic2

α2−→ . . .
αk−1

−→ ick
τ
−→

ick+1 and ic1
β1−→ ic2

β2−→ . . .
βk−1

−→ ick
ǫ
−→ ick+1.

subcase ISYSRIGHT: The argument is symmetric to that of
ISYSLEFT.

subcase ISYSWR: Then ick = 〈s1, ρ1, h1〉
ch!v
−→ ick+1 and

ick = 〈s2, ρ2, h2〉
ch?v
−→ ick+1. Therefore ic1

α1−→ ic2
α2−→

. . .
αk−1

−→ ick
ch!v
−→ ick+1 and ic1

β1−→ ic2
β2−→ . . .

βk−1

−→

ick
ch?v
−→ ick+1.

subcase ISYSRW: The argument is symmetric to that of
ISYSWR.

B.9 Actions at the end of a string

Proof. Both parts are by structural induction on h. Let h be given.
Part 1:

case ǫ: |ǫ · τ | = |τ | = |τ · ǫ| = |ǫ|.
case α · h: |(α · h) · τ | = |α · (h · τ )| If α = τ : |α · (h · τ )| =
|h · τ | = |h| = |α · h|. If α 6= τ : |α · (h · τ )| = α · |h · τ | =
α · |h| = |α · h|.

Part 2: Let α 6= τ be given

case ǫ: |ǫ · α| = |α| = α · |ǫ| = α · ǫ = α = ǫ · α = |ǫ| · α
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case β · h: |(β · h) · α| = |β · (h · α)| If β = τ : |β · (h · α)| =
|h · α| = |h| · α = |β · h| · α. If β 6= τ : |β · (h · α)| =
β · |h · α| = β · (|h| · α) = (β · |h|) · α = |β · h| · α.

B.10 Preservation of last

Proof. By structural induction on s. Let s, s1, ρ, ρ1, h, h1, α be
given.

case s1 ; s2: There are two cases for the transition from 〈s1 ; s2, ρ, h〉:
ISEQ1 and ISEQ2 hence we argue for both:

subcase ISEQ1: In this case 〈s1 ; s2, ρ, h〉
α
−→ 〈s3 ; s2, ρ1, h1〉

and 〈s1, ρ, h〉
α
−→ 〈s3, ρ1, h1〉 and clearly last(s2) =

last(s3 ; s2).

subcase ISEQ2: In this case 〈s1 ; s2, ρ, h〉
α
−→ 〈s2, ρ1, h1〉

and clearly last(s2) = last(s1 ; s2).

case if bℓ then s1 else s2: There are two cases for the transition
from 〈if bℓ then s1 else s2, ρ, h〉: IIF1 and IIF2 hence we
argue for both:

subcase IIF1: In this case 〈if bℓ then s1 else s2, ρ, h〉
τ
−→

〈s1, ρ, h · τ〉 and ρ ⊢B b ⇓ tt and clearly last(s1) ⊆
last(s1) ∪ last(s2) = last(if bℓ then s1 else s2).

subcase IIF2: Analogous to subcase IIF1 above.

case while bℓ do s1 end: In this case the transition must be by
rule IWHILE1 as IWHILE2 leads to a terminal configuration.

Hence 〈while bℓ do s1 end, ρ, h〉
τ
−→〈s1; while bℓ do s1 end, ρ, h·τ 〉

and ρ ⊢B b ⇓ tt and last(s1 ; while bℓ do s1 end) =
last(while bℓ do s1 end) = {ℓ}.

case s1 ⊕
ℓ s2: There are two cases for the transition from 〈s1 ⊕

ℓs2, ρ, h〉:
ICHOICE1 and ICHOICE2 hence we argue for both:

subcase ICHOICE1: In this case 〈s1 ⊕
ℓ s2, ρ, h〉

α
−→ ic1

and 〈s1, ρ, h〉
α
−→ ic1 for some non-terminal configuration

ic1 = 〈s3, ρ1, h1〉. By the induction hypothesis last(s3) ⊆
last(s1) ⊆ last(s1) ∪ last(s2) = last(s1 ⊕

ℓ s2).
subcase ICHOICE2: Symmetric to subcase ICHOICE1 above.

other cases: The cases for skipℓ, x :=ℓe, ch?ℓx , and ch!ℓe are
vacuously true as they can only transition to a terminal config-
uration.

B.11 Local soundness of store and history specification 1

Proof. By structural induction on s. Let s, ρ, ρ1, h, h1, α, Ê , X̂
be given. Let ℓ = first(s) and assume 〈s, ρ, h〉

α
−→ 〈ρ1, h1〉,

Ê , X̂ � s, and that ρ ∈ γst (Êρ(ℓ)), |h| ∈ L(Êh(ℓ)), and |α · f | ∈

L(Êf (ℓ)).

case skipℓ: 〈skipℓ, ρ, h〉
τ
−→ 〈ρ, h · τ〉, h1 = h·τ , first(skipℓ) =

ℓ, last(skipℓ) = {ℓ}, and by assumption ρ1 = ρ ∈ γst (Êρ(ℓ)) ⊆

γst(X̂ρ(ℓ)), |h · τ | = |h| ∈ L(Êh(ℓ)) ⊆ L(X̂h(ℓ)), and

|τ · f | = |τ · f | = |f | ∈ L(Êf (ℓ)) ⊆ L(X̂f (ℓ)).

case x :=ℓe: 〈x :=ℓe, ρ, h〉
τ
−→ 〈ρ[x 7→ v], h · τ〉 for some v

such that ρ ⊢A e ⇓ v. Again h1 = h · τ , first(x :=ℓe) = ℓ,

and last(skipℓ) = {ℓ}. Let (ρ̂, ĥ, f̂) = Ê (ℓ). By as-

sumption and Lemma 7.2 we have v ∈ γv(Â(ρ̂, e)). But
then by assumption and Lemma 7.3 ρ1 = ρ[x 7→ v] ∈

γst(âssign(ρ̂, x , Â(ρ̂, e))) ⊆ γst (X̂ρ(ℓ)), |h · τ | = |h| ∈

L(ĥ) ⊆ L(X̂h(ℓ)), and |τ · f | = |τ · f | = |f | ∈ L(f̂) ⊆

L(X̂f (ℓ)).

case while bℓ do s1 end: The first premise must be by applica-
tion of IWHILE2, as IWHILE1 leads to a non-terminal config-

uration, hence 〈while bℓ do s1 end, ρ, h〉
τ
−→ 〈ρ, h · τ〉 and

ρ ⊢B b ⇓ ff. Again h1 = h · τ , first(while bℓ do s1 end) =

ℓ, and last(skipℓ) = {ℓ}. Let (ρ̂, ĥ, f̂) = Ê (ℓ). By as-

sumption Ê , X̂ � while bℓ do s1 end, we have that

(f̂alse(b, ρ̂), ĥ, f̂) ⊑ X̂ (ℓ). Hence ρ ∈ false(b, γst (ρ̂)) ⊆

γst(f̂alse(b, ρ̂)) ⊆ X̂ρ(ℓ), |h · τ | = |h| ∈ L(ĥ) ⊆ L(X̂h(ℓ)),

and |τ · f | = |τ · f | = |f | ∈ L(f̂) ⊆ L(X̂f (ℓ)).

case s1 ⊕
ℓ s2: In this case one of two rules: ICHOICE1 or ICHOICE2

was applied:

subcase ICHOICE1: 〈s1 ⊕
ℓ s2, ρ, h〉

α
−→ ic1 and 〈s1, ρ, h〉

α
−→

ic1 for some terminal configuration ic1 = 〈ρ1, h1〉. Fur-

thermore ℓ = first(s1 ⊕
ℓ s2) and let ℓ1 ∈ last(s1) ⊆

last(s1 ⊕
ℓ s2). By assumption Ê , X̂ � s1 ⊕

ℓ s2 and there-

fore Ê , X̂ � s1 and Ê (ℓ) ⊑ Ê (first(s1)). Hence by the

induction hypothesis h1 = h · α, and ρ1 ∈ γst(X̂ρ(ℓ1)),

|h · α| ∈ L(X̂h(ℓ1)) |s| ∈ L(X̂f (ℓ1)). When combined

with X̂ (ℓ1) ⊑ X̂ (ℓ) this yields the desired result.

subcase ICHOICE2: The argument is symmetric to the ICHOICE1
case.

case ch?ℓx : We first explore the consequences of our assump-
tions, and then finally conclude each of the three parts of

the lemma’s right-hand-side on this basis. 〈ch?ℓx , ρ, h〉
ch?v
−→

〈ρ[x 7→ v], h · ch?v〉 by rule IREAD. Furthermore h1 = h ·

ch?v, first(ch?ℓx ) = ℓ, and last(ch?ℓx ) = {ℓ}. Let (ρ̂, ĥ, f̂) =

Ê (ℓ). By assumption |ch?v · f | = |ch!v · f | = ch!v · |f | ∈

L(f̂) hence |f | ∈ L(D̂αch({ch!v})(f̂)) by Lemma 4.1. Further-
more [ch; ch] is an atom in Interval , αv({v}) is an atom in

V̂al , ([ch; ch], αv({v})) is an atom in Interval ∗ V̂al , and

αch ({ch!v}) = (αrd (∅), αwr ({ch!v}))

= ((⊥,⊥), αwr ({ch!v}))

= ((⊥,⊥), (αInt({ch}), αv({v})))

= ((⊥,⊥), ([ch; ch], αv({v})))

= ch!αv({v})

is an atom in Ĉh(V̂al). Hence there exists an equivalence class

[ch!v̂a] ∈ r̂ange(f̂) such that αch ({ch!v}) = ch!(αv({v)}) ∈

[ch!v̂a] and D̂αch ({ch!v})(f̂) = D̂r̂epr([ch!v̂a])(f̂). Therefore

we must have D̂r̂epr([ch!v̂a])(f̂) 6⊏∼ ∅. Furthermore, by our as-

sumption about p̂roject : αch ({ch!v}) = ch!(αv({v)}) ⊑

p̂roject([ch!v̂a]) = ch!v̂ and therefore

ch!v ∈γch(p̂roject([ch!v̂a]))

=γch(ch!v̂)

=γwr ((ch, v̂))

={[ch; ch]!v | ch ∈ γInt([ch; ch]) ∧ v ∈ γv(v̂)}

which means that v ∈ γv(v̂). But then by the implication in

the analysis specification âssign(ρ̂, x , v̂) ⊑ X̂ρ(ℓ), ĥ · ch?v̂ ⊑

X̂h(ℓ), and D̂r̂epr([ch!v̂a])(f̂) ⊑ X̂f (ℓ).
(Part 1): h1 = h · ch?v follows immediately from the above.
(Part 2): By assumption ρ ∈ γst(ρ̂) and since v ∈ γv(v̂)

Lemma 7.3 yields ρ[x 7→ v] ∈ γst(âssign(ρ̂, x , v̂)) ⊑ X̂ρ(ℓ).

(Part 3): By assumption |h| ∈ L(ĥ) and since v ∈ γv(v̂)
we have ch?v ∈ γrd ([ch; ch], v̂) and furthermore ch?v ∈
γch(ch?v̂) and therefore by Lemma 7.7 |h · ch?v| = |h| ·
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ch?v ∈ L(ĥ) · {ch?v} ⊆ L(ĥ) · γch(ch?v̂) = L(ĥ) ·

L(ch?v̂) = L(ĥ · ch?v̂) ⊆ X̂h(ℓ).

(Part 4): But then |f | ∈ L(D̂αch ({ch!v})(f̂)) = L(D̂r̂epr([ch!v̂a])(f̂))

⊆ L(X̂f (ℓ)).

case ch!ℓe: Again we first explore the consequences of our as-

sumptions. 〈ch!ℓe, ρ, h〉
ch!v
−→ 〈ρ, h · ch!v〉 where ρ ⊢A e = v

by rule IWRITE. Furthermore h1 = h · ch!v, first(ch!ℓe) = ℓ,

and last(ch!ℓe) = {ℓ}. Let (ρ̂, ĥ, f̂) = Ê (ℓ). By assump-

tion |ch!v · f | = |ch?v · f | = ch?v · |f | ∈ L(f̂) hence

|f | ∈ L(D̂αch({ch?v})(f̂)) by Lemma 4.1. Furthermore

αch ({ch?v}) = (αrd ({ch?v}), αwr (∅))

= (αrd ({ch?v}), (⊥,⊥))

= ((αInt ({ch}), αv({v})), (⊥,⊥))

= (([ch; ch], αv({v})), (⊥,⊥))

= ch?αv({v})

is an atom in Ĉh(V̂al). Hence there exists an equivalence class

[ch?v̂a] ∈ r̂ange(f̂) such that αch ({ch?v}) = ch?(αv({v)}) ∈

[ch?v̂a] and D̂αch ({ch?v})(f̂) = D̂r̂epr([ch?v̂a])(f̂).

Therefore we must have D̂r̂epr([ch?v̂a])(f̂) 6⊏∼ ∅. Further-

more, by our assumption about p̂roject : αch ({ch?v}) =

ch?(αv({v)}) ⊑ p̂roject([ch?v̂a]) = ch?v̂ and therefore

ch?v ∈ γch(p̂roject([ch?v̂a]))

= γch(ch?v̂)

= γrd((ch, v̂))

= {[ch; ch]?v | ch ∈ γInt([ch; ch]) ∧ v ∈ γv(v̂)}

which means that v ∈ γv(v̂). But by Lemma 7.2 v ∈
γv(Â(ρ̂, e)) = γv(v̂

′) for Â(ρ̂, e) = v̂′ hence v ∈ γv(v̂) ∩
γv(v̂

′) = γv(v̂ ⊓ v̂′) which means that v̂ ⊓ v̂′ 6= ⊥. But then

by the implication in the analysis specification ρ̂ ⊑ X̂ρ(ℓ),

ĥ · ch!(v̂ ⊓ v̂′) ⊑ X̂h(ℓ), and D̂r̂epr([ch?v̂a])(f̂) ⊑ X̂f (ℓ).
(Part 1): We immediately have h1 = h · ch!v from the above.

(Part 2): We immediately have ρ ∈ γst(ρ̂) ⊆ X̂ρ(ℓ) by assump-
tion.
(Part 3): By assumption h ∈ L(ĥ) and since v ∈ γv(v̂ ⊓ v̂′)
we have ch!v ∈ γwr ([ch; ch], v̂ ⊓ v̂′) and furthermore ch!v ∈
γch(ch!(v̂ ⊓ v̂′)) and therefore by Lemma 7.7 |h · ch!v| =

|h| · ch!v ∈ L(ĥ) · {ch!v} ⊆ L(ĥ) · γch(ch!(v̂ ⊓ v̂′)) =

L(ĥ) · L(ch!(v̂ ⊓ v̂′)) = L(ĥ · ch!(v̂ ⊓ v̂′)) ⊆ L(X̂h(ℓ))

(Part 4): By the above we have |f | ∈ L(D̂αch({ch?v})(f̂)) =

L(D̂r̂epr([ch?v̂a])(f̂)) ⊆ L(X̂f (ℓ)).

case stopℓ: Vacuously true as no rules lets us transition from
stopℓ.

other cases: The remaining cases are vacuously true as input con-
figurations with s1 ; s2 and if bℓ then s1 else s2 are related
only to non-terminal output configurations.

B.12 Local soundness of store and history specification 2

Proof. By structural induction on s. Let s, s1, ρ, ρ1, h, h1, α, Ê , X̂
be given and let ℓ = first(s). Assume 〈s, ρ, h〉

α
−→ 〈s1, ρ1, h1〉,

Ê , X̂ � s, ρ ∈ γst (Êρ(ℓ)), |h| ∈ L(Êh(ℓ)), and |α · f | ∈

L(Êf (ℓ)).

case s1 ; s2: The first premise must be by application of either
ISEQ1 or ISEQ2 so we argue for both cases:

subcase ISEQ1: Then 〈s1 ; s2, ρ, h〉
α
−→ 〈s3 ; s2, ρ1, h1〉 and

〈s1, ρ, h〉
α
−→ 〈s3, ρ1, h1〉. Furthermore ℓ = first(s1 ; s2) =

first(s1) = ℓ1 and from the analysis specification we there-

fore have Ê , X̂ � s1 and Ê (ℓ) = Ê (ℓ1) and therefore we

can apply the induction hypothesis and conclude Ê , X̂ � s3,

h1 = h · α, ρ1 ∈ γst(Êρ(ℓ3)), |h · α| ∈ L(Êh(ℓ3)), and

|f | ∈ L(Êf (ℓ3)) where ℓ3 = first(s3) = first(s3 ; s2).

(Part 1): We need to show Ê , X̂ � s3 ; s2 or equivalently

(a) Ê , X̂ � s3, (b) Ê , X̂ � s2, and (c) X̂ (ℓ′3) ⊑ Ê (ℓ2)
for all ℓ′3 ∈ last(s3). (a) follows immediately from the
induction hypothesis and (b) follows from the assumption

Ê , X̂ � s1 ; s2. From the same assumption we furthermore

have X̂ (ℓ1) ⊑ Ê (ℓ2) for all ℓ1 ∈ last(s1) which together
with last(s3) ⊆ last(s1) from Lemma 7.8 means that

X̂ (ℓ′3) ⊑ Ê (ℓ2) for all ℓ′3 ∈ last(s3) ⊆ last(s1) and thus
yields (c).
(Part 2): We have h1 = h · α immediately from the above.

For parts 3, 4, and 5 since Ê (ℓ3) = Ê (first(s3)) =

Ê (first(s3 ; s2)) we therefore have ρ1 ∈ γst(Êρ(ℓ3)) =

γst(Êρ(first(s3 ; s2))), |h · α| ∈ L(Êh(ℓ3)) = L(Êh(first(s3 ; s2))),

and |f | ∈ L(Êf (ℓ3)) = L(Êf (first(s3 ; s2))).

subcase ISEQ2: Then 〈s1 ; s2, ρ, h〉
α
−→ 〈s2, ρ1, h1〉 and

〈s1, ρ, h〉
α
−→ 〈ρ1, h1〉 Furthermore from the analysis spec-

ification we have Ê , X̂ � s1 and Ê , X̂ � s2 and for all

ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ Ê (first(s2)) by assumption. By

Lemma 7.9 we can conclude h1 = h ·α, ρ1 ∈ γst(X̂ρ(ℓ1)),

|h · α| ∈ L(X̂h(ℓ1)), and |f | ∈ L(X̂f (ℓ1)). for all

ℓ1 ∈ last(s1).

(Part 1): We immediately have Ê , X̂ � s2 from the analysis
specification.
(Part 2): We immediately have h1 = h · α from the above.
Parts 3, 4, and 5 follow from combining the above facts:

ρ1 ∈ γst(X̂ρ(ℓ1)) ⊆ γst(Êρ(first(s2))), |h · α| ∈ L(X̂h(ℓ1))

⊆ L(Êh(first(s2))), and |f | ∈ L(X̂f (ℓ1)) ⊆ L(Êf (first(s2))).

case if bℓ then sℓ11 else sℓ22 : The first premise must be by appli-
cation of either IIF1 or IIF2 so we argue for both cases:

subcase IIF1: Then 〈if bℓ then s1 else s2, ρ, h〉
τ
−→〈s1, ρ, h·τ 〉

and ρ ⊢B b ⇓ tt and first(if bℓ then s1 else s2) = ℓ.

By assumption Ê , X̂ � if bℓ then s1 else s2, ρ ∈
γst(Êρ(ℓ)), |h| ∈ L(Êh(ℓ)), and |α · f | ∈ L(Êf (ℓ)). Let

(ρ̂, ĥ, f̂) = Ê (ℓ).

(Part 1): We immediately have Ê , X̂ � s1 from the assump-

tion Ê , X̂ � if bℓ then s1 else s2.
(Part 2): We immediately have h1 = h · τ from the above.
(Part 3): Since ρ ∈ γst(ρ̂) and ρ ⊢B b ⇓ tt we have

ρ ∈ γst(t̂rue(ρ̂, b)) ⊆ γst(Êρ(first(s1))) by Lemma 7.4
and the analysis specification.

(Part 4): By assumption |h| ∈ L(ĥ) and Lemma 7.7 |h1| =

|h · τ | = |h| ∈ L(ĥ) ⊆ L(Êh(first(s1))).
(Part 5): By assumption we get |τ · f | = |τ · f | = |f | ∈

L(f̂) ⊆ L(Êf (first(s1))).

subcase IIF2: The argument is symmetric to that of subcase
IIF1.

case while bℓ do s1 end: The first premise must be by appli-
cation of IWHILE1, as IWHILE2 leads to a terminal con-
figuration, hence we have 〈while bℓ do s1 end, ρ, h〉

τ
−→
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〈s1 ; while bℓ do s1 end, ρ, h · τ 〉 and ρ ⊢B b ⇓ tt and

first(while bℓ do s1 end) = ℓ.

(Part 1): By assumption Ê , X̂ � s1, (t̂rue(b, ρ̂), ĥ, f̂) ⊑

Ê (first(s1)), and for all ℓ1 ∈ last(s1). X̂ (ℓ1) ⊑ Ê (ℓ) where

(ρ̂, ĥ, f̂) = Ê (ℓ). To satisfy Ê , X̂ � s1 ; while bℓ do s1 end

we need Ê , X̂ � s1, Ê , X̂ � while bℓ do s1 end, and for

all ℓ1 ∈ last(s1) X̂ (ℓ1) ⊑ Ê (first(while bℓ do s1 end)) =

Ê (ℓ) which all follow by assumption.
(Part 2): We immediately have h1 = h · τ from the above.

(Part 3): Since ρ ∈ γst(Êρ(ℓ)) and ρ ⊢B b ⇓ tt we have

ρ ∈ γst(t̂rue(Êρ(ℓ), b)) ⊆ γst(Êρ(first(s1))) by Lemma 7.4
and the analysis specification.

(Part 4): By assumption |h| ∈ L(Êh(ℓ)) and Lemma 7.7 |h1| =

|h · τ | = |h| ∈ L(Êh(ℓ)) ⊆ L(Êh(first(s1))).
(Part 5): By assumption we get |τ · f | = |τ · f | = |f | ∈

L(Êf (ℓ)) ⊆ L(Êf (first(s1))).

case s1 ⊕
ℓ s2: In this case one of two rules: ICHOICE1 or ICHOICE2

was applied:

subcase ICHOICE1: 〈s1 ⊕
ℓ s2, ρ, h〉

α
−→ ic1 and 〈s1, ρ, h〉

α
−→

ic1 for some non-terminal configuration ic1 = 〈s3, ρ1, h1〉

and first(s1 ⊕
ℓ s2) = ℓ. By assumption Ê , X̂ � s1 ⊕

ℓ s2
and therefore Ê , X̂ � s1 and Ê (ℓ) ⊑ Ê (first(s1)). Hence

by the induction hypothesis Ê , X̂ � s3, h1 = h · α,

ρ1 ∈ γst(Êρ(first(s3))), |h · α| ∈ L(Êh(first(s3)))

|f | ∈ L(Êf (first(s3))).

(Part 1): We immediately have Ê , X̂ � s3 from the induc-
tion hypothesis.
(Part 2): We immediately have h1 = h · τ from the above.

(Part 3): We immediately have ρ1 ∈ γst(Êρ(first(s3)))
from the above.
(Part 4): We immediately have |h · α| ∈ L(Êh(first(s3)))
from the above.
(Part 5): We immediately have |f | ∈ L(Êf (first(s3))) from
the above.

subcase ICHOICE2: The argument is symmetric to the ICHOICE1
case.

other cases: The remaining cases are vacuously true as input con-
figurations with skip

ℓ, x :=ℓe, ch?ℓx , ch!ℓe, and stop
ℓ are

related only to terminal output configurations.

B.13 Non-terminating system analysis soundness

Proof. By induction on the length of the decoupled trace.

case n = 1: Then ic1 = 〈s1, ρ1, h1〉 = icn = 〈sn, ρn, hn〉
which means that s1 = sn, ℓ1 = first(s1) = first(sn) = ℓn,
ρ1 = ρn, and h1 = hn. Furthermore from our assumptions

we get ρ1 = ρn ∈ γst (Êρ(first(sn))) = γst(Êρ(first(s1))),

|h1α1α2 . . . α0| = |h1ǫ| = |hn| ∈ L(Êh(first(s1))) =

L(Êh(first(sn))), and |β1β2 . . . βn−1f | = |β1β2 . . . β0f | =

|f | ∈ L(Êf (first(s1))) = L(Êf (first(sn))).
case n = k + 1: We proceed by case analysis on α1.

subcase α1 = ǫ: Then β1 = τ by rule ISYSRIGHT since oth-
erwise the first step would not represent a decoupled system

step. But then ic1 = ic2 = 〈s1, ρ1, h1〉. We assume Ê , X̂ �

s1, ρ1 ∈ γst(Êρ(first(s1))), |h1| ∈ L(Êh(first(s1))), and
|β1β2 . . . βn−1f | = |τβ2 . . . βn−1f | = |β2 . . . βn−1f | ∈

L(Êf (first(s1))). By the induction hypothesis we there-

fore have ρn ∈ γst(Êρ(first(sn))), |h1ǫα2 . . . αn−1| =

|h1α1α2 . . . αn−1| = |hn| ∈ L(Êh(first(sn))), and |f | ∈

L(Êf (first(sn))).

subcase α1 6= ǫ: It must be that case that ic2 = 〈s2, ρ2, h2〉
since no rules allow transitions out of terminal configura-

tions 〈ρ2, h2〉. Since 〈s1, ρ1, h1〉
α1−→ 〈s2, ρ2, h2〉, Ê , X̂ �

s1, ρ1 ∈ γst(Êρ(first(s1))), |h1| ∈ L(Êh(first(s1))),

and |β1β2 . . . βn−1f | ∈ L(Êf (first(s1))) we can con-

clude from Lemma 7.10 that Ê , X̂ � s2, h2 = h1 · α1,

ρ2 ∈ γst(Êρ(first(s2))), |h1 · α1| ∈ L(Êh(first(s2))),

and |β2 . . . βn−1f | ∈ L(Êf (first(s2))). In particular, for
α1 = τ then β1 = ǫ since the first step must be an ap-
plication of ISYSLEFT. Similarly if α1 6= τ then β1 = α1

since the first step must be an application of either ISYSWR

or ISYSRW. Now the remainder 〈s2, ρ2, h2〉 = ic2
α2−→

. . .
αn−1

−→ icn and ic2
β2−→ . . .

βn−1

−→ icn represents a de-
coupled system trace. We can therefore apply the induc-

tion hypothesis and conclude ρn ∈ γst(Êρ(first(sn))),

|(h1 · α1)α2 . . . αn−1| ∈ L(Êf (first(sn))), and |f | ∈

L(Êf (first(sn))) as desired.
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C. Widening proofs

C.1 rev twice is identity: ∀r ∈ R̂A. rev(rev(r)) = r

Proof. By structural induction over r. Let r ∈ R̂A be given.

case ∅: rev(rev(∅)) = rev(∅) = ∅
case ǫ: rev(rev(ǫ)) = rev(ǫ) = ǫ
case ℓ: rev(rev(ℓ)) = rev(ℓ) = ℓ
case r1 · r2: rev(rev(r1 · r2)) = rev(rev(r2) · rev(r1)) = rev(rev(r1))·

rev(rev(r2)) = r1 · r2 by two applications of the IH.

case r∗1 : rev(rev(r∗1)) = rev(rev(r1)
∗) = rev(rev(r1))

∗ = r∗1
by applying the IH.

case r1 + r2: rev(rev(r1 + r2)) = rev(rev(r1) + rev(r2)) =
rev(rev(r1))+ rev(rev(r2)) = r1+r2 by two applications of
the IH.

case r1 & r2: rev(rev(r1 & r2)) = rev(rev(r1)& rev(r2)) =
rev(rev(r1))& rev(rev(r2)) = r1 & r2 by two applications
of the IH.

case ∁ r1: rev(rev(∁ r1)) = rev(∁ rev(r1)) = ∁ rev(rev(r1)) =
∁ r1 by applying the IH.

C.2 rev is reverse: ∀r ∈ R̂A. L(rev(r)) = rev(L(r))

where rev(S) = {rev(s) | s ∈ S}

Proof. By structural induction over r. Let r ∈ R̂A be given.

case ∅: L(rev(∅)) = L(∅) = ∅ = rev(∅) = rev(L(∅)) by the
definitions of rev and L.

case ǫ: L(rev(ǫ)) = L(ǫ) = {ǫ} = rev({ǫ}) = rev(L(ǫ)) by the
definitions of rev and L.

case ℓ: L(rev(ℓ)) = L(ℓ) = {c | c ∈ γ(ℓ)} = rev({c | c ∈ γ(ℓ)}) =
rev(L(ℓ)) by the definitions of rev and L.

case r1 · r2:

L(rev(r1 · r2))

= L(rev(r2) · rev(r1)) (by def. of rev )

= L(rev(r2)) · L(rev(r1)) (by def. of L)

= rev (L(r2)) · rev(L(r1)) (by IH, twice)

= rev (L(r1) · L(r2)) (by def. of rev )

= rev (L(r1 · r2)) (by def. of L)

case r∗1 :

L(rev(r∗1))

= L(rev(r1)
∗) (by def. of rev )

= ∪i≥0L(rev(r1))
i

(by def. of L)

= ∪i≥0rev(L(r1))
i

(by IH)

= rev(∪i≥0L(r1)
i) (by def. of rev )

= rev(L(r∗1)) (by def. of L)

case r1 + r2:

L(rev(r1 + r2))

= L(rev(r1) + rev(r2)) (by def. of rev )

= L(rev(r1)) ∪ L(rev(r2)) (by def. of L)

= rev(L(r1)) ∪ rev (L(r2)) (by IH, twice)

= rev(L(r1) ∪ L(r2)) (by def. of rev )

= rev(L(r1 + r2)) (by def. of L)

case r1 & r2:

L(rev(r1 & r2))

= L(rev(r1)& rev(r2)) (by def. of rev )

= L(rev(r1)) ∩ L(rev(r2)) (by def. of L)

= rev(L(r1)) ∩ rev(L(r2)) (by IH, twice)

= rev(L(r1) ∩ L(r2)) (by def. of rev )

= rev(L(r1 & r2)) (by def. of L)

case ∁ r1:

L(rev(∁ r1))

= L(∁ rev(r1)) (by def. of rev )

= ℘(C∗) \ L(rev(r1)) (by def. of L)

= ℘(C∗) \ rev(L(r1)) (by IH)

= rev(℘(C∗)) \ rev(L(r1)) (by def. of rev )

= rev(℘(C∗) \ L(r1)) (by def. of rev )

= rev(L(∁ r1)) (by def. of L)

C.3 rev is monotone:
∀r, r′ ∈ R̂A. r ⊏∼ r′ =⇒ rev(r) ⊏∼ rev(r′)

Proof. We prove L(r) ⊆ L(r′) =⇒ L(rev(r)) ⊆ L(rev(r)).

Let r, r′ ∈ R̂A be given and assume L(r) ⊆ L(r′).

L(rev(r))

= rev(L(r)) (by Lemma 5.2)

⊆ rev(L(r′)) (by monotonicity of rev : ℘(C∗) −→ ℘(C∗))

= L(rev(r′)) (by Lemma 5.2)

C.4 Reversing a widening operator over regular expressions

Proof.

▽rev is increasing in both arguments:

By assumption ∀r, r′ ∈ R̂A. r ⊏∼ r▽ r′. But then rev(r) ⊏∼
rev(r)▽ rev(r′) and hence by monotonicity of rev : r =
rev(rev(r)) ⊏∼ rev(rev(r)▽ rev(r′)) = r▽rev r

′.

Similarly, by assumption ∀r, r′ ∈ R̂A. r
′ ⊏∼ r▽ r′. But then

rev(r′) ⊏∼ rev(r)▽ rev(r′) and hence by monotonicity of rev :

r′ = rev(rev(r′)) ⊏∼ rev(rev(r)▽ rev(r′)) = r▽rev r
′.

Chain property: By assumption, for all increasing chains r0 ⊏∼
r1 ⊏∼ r2 ⊏∼ . . . the alternative chain defined as r0 = r0 and
rk+1 = rk ▽ rk is guaranteed to stabilize after a finite number
of steps.

Let an increasing chain r0 ⊏∼ r1 ⊏∼ r2 ⊏∼ . . . be given. By
monotonicity of rev , the pointwise reversed chain is still in-
creasing: rev(r0) ⊏∼ rev (r1) ⊏∼ rev(r2) ⊏∼ . . . . But then

the alternative chain defined as r′0 = rev(r0) and r′k+1 =
r′k ▽ rev(rk) is increasing and guaranteed to stabilize after
a finite number of steps. By induction it now follows that
rev(r′i) = ri:
case 0: rev(r′0) = rev(rev(r0)) = r0.
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case k + 1:

rev(r′k+1)

= rev(r′k ▽ rev(rk)) (by def. of r′k+1)

= rev(rev(rev(r′k))▽ rev(rk)) (By Lemma 5.1)

= rev(r′k)▽rev rk (by def. of ▽rev )

= rk ▽rev rk (by the IH)

= rk+1 (by def. of rk+1)

Hence by monotonicity of rev , rev(r′0) ⊏∼ rev(r′1) ⊏∼ . . . ⊏∼
rev(r′n−1) ⊏∼ rev(r′n) for some n.
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