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Abstract. We present a derivation of a control-flow analysis by ab-
stract interpretation. Our starting point is a transition system seman-
tics defined as an abstract machine for a small functional language in
continuation-passing style. We obtain a Galois connection for abstract-
ing the machine states by composing Galois connections, most notable an
independent-attribute Galois connection on machine states and a Galois
connection induced by a closure operator associated with a constituent-
parts relation on environments. We calculate abstract transfer functions
by applying the state abstraction to the collecting semantics, resulting
in a novel characterization of demand-driven 0-CFA.

1 Introduction

Over twenty-five years ago Jones [16] statically approximated the flow of lambda-
expressions. Since then control-flow analysis (CFA) has been the subject of im-
mense research [2,25,30,31]. Ten years ago Nielson and Nielson designed a co-
inductive collecting semantics for control-flow analysis and at the same time
asked [25, p.1]: How does one exploit Galois connections and widenings to sys-
tematically coarsen [control-flow analysis|?”

In this paper we take the first steps towards answering that question, by ex-
pressing a control-flow analysis as the composition of several well-known Galois
connections, thereby spelling out the approximations taking place. Our approach
thus follows Cousot’s programme of calculational abstract interpretation [6] in
which an abstract interpretation is calculated by systematically applying ab-
straction functions to a formal programming language semantics.

We develop our approach in the setting of CFA for functional languages.
A substantial amount of work concerned with abstract interpretation of func-
tional languages is based on denotational semantics [19] in which source-level
functions are modelled with mathematical functions [29]. However, as CFA is
concerned with operational information about source-level functions we believe
that a denotational starting point is inadequate for a calculational derivation of
control-flow analysis by abstract interpretation. Instead, we have chosen to base
our derivation on an operational semantics in the form of an abstract machine
(a transition system) in which source-level functions are modelled with closures
which are pairs of expressions and environments. Closures were originally sug-
gested by Landin to model functions in the SECD machine [20] and have since
become a standard implementation method for functional languages [1].



p(SEzp x Env) collecting semantics (Figure 4)
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p(SEzp) x p(Env) intermediate transfer function (Figure 5)
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©(SEzp) x Env* demand-driven 0-CFA (Figure 6)

Fig. 1: The big picture

The aim of a functional CFA is to determine which functions are bound
to which variables during execution. This information is found in the environ-
ments during the execution of the program. Accordingly, an essential part of
the abstraction technique that we propose is to express appropriate Galois con-
nections for extracting the approximate environment components of a machine
state. Environments are recursive structures that themselves may contain clo-
sures which in turn contain environments. A crucial step in the derivation is the
definition of an upper closure operator on environments that induce an appro-
priate Galois connection. Figure 1 summarizes the two steps of the abstraction.
From a reachable-states collecting semantics of the CE machine [14], defined in
Section 5, we first abstract the machine components as independent attributes.
Next we abstract the pair of sets by an environment abstraction based on the
notion of constituent relation of Milner and Tofte [23]. These and other Galois
connections for abstracting values are defined in Section 6. The composition of
these Galois connections yields an abstraction function that is again applied to
the transfer function to calculate a demand-driven 0-CFA. The calculations are
given in Section 7. The contributions of the paper are as follows.

— We start from a well-known operational semantics, instead of instrumenting
a collecting semantics.

— We apply Cousot-style abstract interpretation to CFA: reachable states of a
transition system systematically abstracted through Galois connections.

— We explain the approximations of a CFA by spelling it out as the composition
of several well-known Galois connections.

— We characterize demand-driven 0-CFA as a simple independent attribute
abstraction of a reachable states semantics.

— Finally, we calculate the analysis rather than postulating it and verifying it
a posteriori.

An implementation of the derived analysis and an example is briefly explained
in Section 8. Section 9 compares the analysis to related work. Section 10 con-
cludes and lists future work which notably consists in calculating a flow-sensitive
CFA by using alternative Galois connections to approximate machine states. We
assume the reader is familiar with operational semantics, continuation-passing
style (CPS), control-flow analysis, complete lattices, and fixed points. The fol-
lowing sections provides a concise summary of well-known facts about abstract
interpretation that will be used in the paper.



2 A short introduction to abstract interpretation

We recall a number of properties related to complete lattices, Galois connections,
and closure operators. The section consists of known material from the research
literature [7-9,11,13]. Readers familiar with the material can skip to the next
section.

2.1 Galois connections etc.

The powerset of a set S is written p(.5). The powerset ©(S) ordered by set inclu-
sion is a complete lattice (p(S); C,0,S, U, N). A Galois connection between two
posets (D1; C1) and (Ds; Cs) (the concrete and the abstract domain) is a pair of
maps « : D1 — Dy (the abstraction map) and v : Da — Dy (the concretisation
map) such that Ve € Dy : Va € Dy : a(c) C2 a < ¢ Cq y(a). Equivalently
« is monotone, 7 is monotone, v o « is extensive (Ve € Dy : ¢ C1 v o a(c)),
and « o « is reductive (Va € Dy : a0 y(a) C2 a). Galois connections are type-

set as (D1;Cq) % (D9; Co). When the domains are apparent from the con-

text we use the lighter notation Dy % Dy. Now let (D1;Cq, L4, Ty, Ug, N1)
and (D2;Ca, Lo, To, Ua, N2) be complete lattices. Given a Galois connection
Dy % D5 then « is a complete join-morphism (CJM) (a(U1 X) = Uga(X) =

Ug{a(x) | x € X}) (and v is a complete meet-morphism). Given a complete
join-morphism « and y(y) = Ui{z € D1 | a(z) Co y} then they form a Galois

connection.

Ezample 1 (Identity abstraction). Two identity functions 1p = Az.x form a
1

Galois connection on a poset (D; C) 1<:,D (D; C).
D

Ezample 2 (Elementwise abstraction). Let an elementwise operator @ : C' — A
be given. Define aa(P) = {Q(p) | p € P} and ya(Q) = {p | Q(p) € Q}. Then

p(C) == p(A).

Ezample 3 (Pointwise abstraction of a set of functions). Assume an abstraction
~
(p(D2); C,0, D2, U, N) === (D; 5, 15, T, %, Nf)
and let
ag(F) =X x.ae({f(x) |z €D1 N fEF}

11 (®) ={f €Dy = Dy | Va: f(z) € 72(P(x))}

R R R T
Then <p(Dl i DQ);Q,Q),Dl - DQ; Ua m> ’Y—H> <D1 i Dg;gQaJ—QvTQa Ugv mg>

o
where we have used the pointwise notation A 7 B <= Vz.A(x) r B(z) and
¢ = A__.c for relations and constants.

Cousot and Cousot [11, Sect.3] describe the pointwise abstraction as the com-
position of three abstractions.

One can abstract a set of pairs into a pair of sets, in turn performing an at-
tribute independent abstraction [18], as relational information between the com-
ponents of the individual pairs is lost.



Ezample 4 (Abstraction of a binary relation by a pair of sets). Let
ax (r) = (m(r), ma(r)) (X, Y)) =X xY

where mi(r) = {z |3y : (x, y) € r}, m(r) = {y
Cx=CxG, Ly =(0,0), Tx = (D1, D2), Ux =

| 3z : (z, y) € r}, and let
U X U,and Ny = N X N.

Then
' x
{p(D1 x D3); S, 0, D1 x Dy, U, N) === (p(D1) x 9(D2); Cx;, Lx; Tx, Ux, Nix)

An upper closure operator is a map p : D — D on a poset (D;C) that is
extensive (Vx € D : x C p(x)), monotone (Vx,2’ € D : 2z C 2/ = p(x) C
p(z')), and idempotent (Vx € D : p(x) = p(p(z))). A closure operator p on a

1

poset (D; C) induces a Galois connection: (D; C) # (p(D); C) . Finally the

image of a complete lattice (D; C, L, T, U, N) by a closure operator p is itself a
complete lattice (p(D); C, p(L), (T), AX. p(U X), N).

2.2 Composition of Galois connections

Galois connections enjoy a number of properties regarding composition. One can
abstract a pair of sets by abstracting its components.

Ezample 5 (Abstraction of a pair of sets by an abstract pair). Assuming two
Galois connections <p(D1) C,0,D1,U,N) —= _> (Dt 1t T8 Ut Nt and

<p(D2)7 _7(2) DQ, U m> <Dg7 Cng-gnga Ugv 2>a define

ag((X, Y)) = (a1(X), az(Y)) Yo ((z, ) = (1n(2), 72())
where g®: gg X gg, J_® = <J_§, J_g>, T® = <—|—§, Tg>, U® = U’i X Ug, and
Ng = ﬂg X ﬂg. Then

y
<@(D1) X p(DQ);ngj—XvTXv U><a m><> Q—Z) <ID§ X Dg;g®ﬂJ—®vT®a U®7 m®>

Most importantly Galois connections compose sequentially.

Lemma 1 (Compositional abstraction). Given two Galois connections be-
tween complete lattices (Do; Co, J_o, To, Uog, No) l‘:l (D1;Cq, L1, Ty, U, Ny

and <D1,C1,J_1,—|—1, Ul, ﬂ1> —> <D2,C2,J_2,T2, UQ, ﬂ2> then

Y107
(Do; Co, Lo, To, Uo, No) e (D2; Ca, L2, Ta, Ug, Na)

Q01

3 Language

As our source language we take CPS expressions characterized by the grammar
in Figure 2 [12]. The grammar distinguishes between serious expressions, denot-
ing expressions whose evaluation may diverge, and trivial expressions, denoting



expressions whose evaluation will terminate. We further distinguish three differ-
ent forms of variables: source variables z, continuation variables k, and formal
continuation parameters v, each drawn from disjoint countable sets of variables
X, K, and V, respectively. We let Var denote the disjoint union of the three
Var = X U V U K. When apparent from the context we will also use z as a
generic meta-variable z € Var.

= Ak. e
o= to tl C | ct

CPS programs)
serious CPS expressions)
w==z | v | Az,k.e (trivial CPS expressions)

s=Xv.e | k

[S IS W

—~ o~~~

continuation expressions)

Fig. 2: BNF of CPS language

For brevity we write Az, k. e for Ax. Ak. e. Furthermore we let SEzp, TExp,
and CFEzp denote the domain of serious expressions SEzp = L(e), the domain
of trivial expressions TFExp = L(t), and the domain of continuation expressions
CExp = L(c), respectively. ® Slightly misusing notation we will furthermore use
e, t, and ¢ (with subscripts and primes) as meta-variables to denote a serious
expression, a trivial expression, and a continuation expression, respectively. Their
use will be apparent from the context. The language is Turing-complete, in that
it is sufficient to express a CPS-version of the (2-combinator (Az.zzA\y.yy):

Mko. Az, k. xx k) Ay, ko y y ko) ko

4 Semantics

Our starting point semantics will be the CE machine of Flanagan et al. [14]. As
opposed to Flanagan et al. we consider only unary functions in the CPS lan-
guage. Furthermore, our starting-point grammar is a slightly refactored version
of the grammar given by Flanagan et al., and the machine description has been
refactored accordingly. As a consequence the number of machine transitions is
thus cut down to two.

The values and environments of the machine are given in Figure 3a. Values
can be either closures, continuation closures, or a special stop value that signals
a machine halt. We let Val denote the set of values Val = £(w) and we let Env
denote the set of environments Env = L(r). The environments in Env constitute
partial functions, with e being the partial function nowhere defined. We use w
and r (with subscripts and primes) as meta-variables to denote a machine value
and a machine environment, respectively. Again their use will be apparent from
the context. In the spirit of the original CE machines helper function u, we
formulate two helper functions p; and p. in Figure 3b for evaluating trivial
expressions and continuation expressions, respectively.

3 using the £(N) notation for the language generated by the non-terminal N.



w=[Az, k. e, r] | [Av.e, 7] | stop (values)
ra=e | [z w) (environments)

(a) Values and environments

¢ : TEzp X Env — Val
It zp X Env a e : CEzp x Env — Val

iz, 7) = r(z)
c(kyr)y=r(k
(v, 7) = r(2) O
we(Az, k. e, r) = [Az, k. e, 7] felAv-€ 1) = 1AV 6 T
(b) Helper functions
where [z, k. e, '] = ui(to, 1)
(tota ) 1) —> (e, 7'[1 > wllls — we]) w = pa(ts,7)

we = pe(c, )

where [Mv.e, r'] = pc(e, )

(ct, r) — (e, r'[v— w]) w = p(t, )

(c¢) Transition relation

eval(Ak.e) = w iff
(e, o[k — [Avr. ky vy, o[k — stop]]]) —" (kr v, o[k — stop][v, — w])

(d) Machine evaluation

Fig. 3: The CE abstract machine

A machine state is a pair consisting of a serious expression and an environ-
ment. The transition relation of the machine is given in Figure 3c. The initial
state of the machine binds the initial continuation variable k to a special contin-
uation closure containing a stop value. When applied, the special continuation
closure will first bind the final result to a special variable v, and afterwards at-
tempt to apply the stop value (the latter indicating a final state). The machine
evaluates CPS programs by repeatedly transitioning from state to state until it
is either stuck or in a final state.

5 Collecting semantics

As traditional we consider the reachable states of the transition system as our
collecting semantics [5,10].

L. . = {(e, o[k — [Av,. kv, o[k, — stop]]])} (initial state)
Fy e : p(SExp x Env) — o(SExp x Env)
Faxr.o(S) =Dy cU{s|3s'€S:5 — s} (strongest post-condition)



The reachable states semantics is now given as the limit |J,,~, F¥,. . (0). Due to
the notational overhead we shall refrain from subscripting with the program at
hand from here onwards.

We give an equivalent formulation of the collecting semantics in Figure 4
with helper functions extended to operate on sets of environments. A simple
case analysis reveals that pf and p& are monotone in their second argument.
By another case analysis one can establish two equivalences between the helper
functions Vt, R : Vr € R : {w | w= p(t,r)} = u¥(t,{r}) and Ve,R:Vr € R:
{w | w=pclce,r)} = p8(c,{r}). A final case analysis establishes the equivalence
of the two: VS : (e, ry € F(S) < (e, r) € F(5).

u? : TExp x p(Env) — p(Val)
ui (z, R) = {r(z) | r € R}
ui (v, R) =A{r(v) | r € R}
wS Az, k. e, R) ={[Az,k.e, r] | r € R}
(a) Collecting helper functions

ws : CEzp X p(Env) — p(Val)
ue (k, R) =A{r(k) | r € R}
uS(Av. e, R) = {[\v.e, r] | r € R}

F.: p(SEzp x Env) — o(SEzp X Env)
F.(8) = L. c
u{{e, r'lz— w][k' — w]) | Htotrc, r) €S :
o, K. ¢’ 1] € uf (to, {r})
A w € py(t,{r})
A we € pg (e, {r})}
u{(e, r'[v—wl) | Hct, r) €S :
D€, r'l e ufc,{r})
A wepf(t{r})}
(b) Transition function

Fig. 4: Reachable states collecting semantics

6 Abstracting the collecting semantics

With the collecting semantics in place we are now in position to abstract it. We
describe the abstractions for values, environments, and machine states in turn.

6.1 Abstraction of values

Values are abstracted using the elementwise abstraction of Example 2. First, the
grammar of abstract values reads as follows.

wh = [Az, k. e] | [Av.e] | stop (abstract values)



We let Val* = L£(w*) denote the domain of abstract values. Secondly, we define
an elementwise operator mapping a concrete value to its abstract counterpart.
The operator abstracts away the captured environment component of closure
values.

Q: Val — Val*

Q([A\z, k. e, r]) = [Az, k. €]
Q([Av. e, 7)) = [\v. €]
@Q(stop) = stop

6.2 Abstraction of environments

In order to perform environment extension (binding) we need to concretize an en-
vironment component from an abstract closure. Unfortunately a straight-forward
pointwise extension of the above value abstraction will not suffice: concretization
of an abstract closure would return top representing any environment compo-
nent. We therefore prefix the pointwise environment abstraction by an abstrac-
tion based on a closure operator to ensure that any captured environment in a
set of environments belongs to the set itself. We will use a constituent relation
formulated by Milner and Tofte [23] to express the closure operator.

For a tuple (z1,...,z,) each entry x; is a constituent of the tuple. For a
partial function [z; — wy ... 2, — wy], each w; is a constituent of the function.*
We write x > y if y is a constituent of z. We denote by >* the reflexive transitive
closure of the constituent relation.> We can now formulate an appropriate closure
operator which induces the first Galois connection.

Definition 1 (Closure operator).
p: p(Env) — p(Env)
p(R)y={r" € Env |3Ire R:r="r'}
Intuitively, given a set of environments, the closure operator returns a larger
set containing all the “enclosed” environments of its argument. For the set of

environments in the reachable states semantics the closure operator acts as an
identity function, since the set is already closed.

Lemma 2 (p is an upper closure operator).
p is extensive, monotone, and tdempotent.

Proof. The proofs for extensiveness and monotonicity are straightforward. Idem-
potency follows from extensiveness and transitivity of the >=* relation.

Ezample 6 (Applying p). We apply p to the singleton environment {e[k —
[Avr. Ky vy, o[k, — stop]]]} originating from the initial state Iy .. Besides the
element itself, o[k, — stop] is also a constituent environment. Hence

p({e[k = [Avq. k- vy, o[k +— stop]]]}) = {e[k. — stop],
o[k — [Avy. k- vy, o[k, — stop]]]}
* Milner and Tofte [23] define the constituent relation on finite maps, whereas we

define it for partial functions.
5 Milner and Tofte [23] instead introduce constituent sequences.



Next we apply the pointwise abstraction from Example 3, based on the value
abstraction of Section 6.1.

p(p(Env)) <Z:>Z Env® where Env* = Var — p(Val)

Strictly speaking this Galois connection applies to the complete lattice p(FEnv),
whereas in this case we have a specialized complete lattice p(p(Env)). As the lat-
ter is a subset of the former, the definition of a7 still applies. As for the existing
definition of 77 its image p(Env) does not agree with p(p(Env)). However since
ajgr is a CJM it uniquely determines a specialized ;7. We leave a direct definition
of vy unspecified. With this in mind, we compose the two Galois connections

1 nu
and get another Galois connection: p(Env) <—#} p(p(Env)) <—Z_H> Envt.
7

6.3 Abstraction of machine states

As outlined in Figure 1 the abstraction of machine states is staged in two. We
first abstract the independent attributes of the reachable states using Example 4.
Next we abstract the pair of sets using Example 5 on the environment abstraction
from Section 6.2. The first component, i.e., the set of reachable expressions, is
not abstracted, hence instantiated with the identity abstraction.

As traditional [9-11] we consider the reduced product of both the abstract do-
mains, i.e., all abstract pairs with an empty expression set or an empty abstract
environment implicitly represent bottom.

7 Calculating the analysis

We calculate an abstract transition function using a traditional recipe [10], by
applying the independent attributes abstraction to the transition function from
the collecting semantics. The following lemma determines the result as the best
abstraction. It furthermore states the strategy for the calculation of a new transi-
tion function when read directionally from left to right. The resulting F'y appears
in Figure 5.

Lemma 3 (Transition function as best abstraction).
VS o (Fe(vx(5))) = Fx(5)

Proof. Let S = (E, R) be given. Since ay is a complete join morphism, it
distributes onto the three sets in F.’s definition. We consider the case of the last
of the three sets:

ax ({(e/, o w]) [ Iet, r) € 7 ((E, R)) :
Av. e, r'] € us(c,{r})
A we pg(t{rh})
= anx( U {(¢/, 'l w)})
(et,m) €vx((E, R)) (formulate as join)

v €', r] € uf (e, {r})
we pf (t,{r})



— U et o e

(et ) € ((B, R)) (ax a CIM)
[Av. e, r'l e pf(c,{r})
w € puf (t,{r})

using the definitions of ax and yx we arrive at the last set of Fyy’s definition. O

For a given program \k. e:

Fx : p(SExp) x p(Env) — o(SEzp) x ©(Env)
Fx((E, R)) = ({e}, {o[k = [Av,. kv, o[k — stop]]]})

/ / /
U U, ({e'} {r'[z = w][k" — wc]})
toticeEE reR
Az, k' e’ r'] € uf (to,{r})
we nf (01, {r})
we € € (e )

i ’
Ux U, {e}, {r'[v— w]})
cteFE rER
Av. e, r'] € p8(c{r})
w € pf (t,{r})

Fig. 5: Independent attributes transition function

Next we abstract the pair of sets by an abstract pair again following a recipe.
We first calculate abstract helper functions ug and pf. By construction they
satisfy the following lemma. Furthermore the lemma states the strategy for the
calculations when read directionally from left to right. The calculations proceed
by case analysis.

Lemma 4 (Equivalence of helper functions).
v, R s aa(uf (t R)) = p(t,an(R)) A Ve, R:aa(u(c, B)) = h(can(R)

Another case analysis reveals that ,ug and pf, are monotone in their second ar-
gument. By a third case analysis one can prove the following lemma concerning
applying helper functions to “closed” environments.

Lemma 5 (Helper functions on closed environments).
v Ryw: w e pf(t p(R) = {r | ws" 71} C p(R)
Ve, Rows w e p(c, p(R) = {r | w="*r} C p(R)

Finally we need a lemma formulating abstraction of an extended environment
in terms of the abstraction of its subparts.

Lemma 6 (Abstraction of environment extension).
Vo,w,R:{r | w>"r} C p(R)
= am o p({rlv—wl | r € p(R)}) C an o p(R)[v > aa({w})f



where we have used the shorthand notation R [v— {...}]f = R* U v {...}].
We omit the proof due to lack of space.

We are now in position to calculate the abstract transition function. By con-
struction, the abstract transition function satisfies the following lemma. Again,
when read directionally from left to right, the lemma states the strategy for the
calculation. The resulting analysis appears in Figure 6.

Lemma 7. VS : ag(Fx(S)) Ce Fi(ag(S))

Proof. Let S = (F, R) be given. Again ag is a complete join morphism and
hence distributes onto the three sets from Fy’s definition. We consider the case
of the last of the three sets. First observe

reRAMv.€, ' eplc,{r}) ANweuf(t{r})
= rep(R)A[Mv.e, 1] eus(c,{r}) Anwe uft{r}) (p extensive)
= [\ e, '] € uf(c, p(R)) Aw € pf (t, p(R)) (1€, p§’ monotone)
=71 € p(R)A[Mv. €, '] € u£(c,p(R)) AN w € uf (L, p(R)) (by Lemma 5)
— 1 € p(R) Ao ({0 ¢, 1']}) € (e, p(R))) A w e (1, p(R))

(e@ monotone)
< 1" € p(R) A [Mv. €] € aa(uf(c, p(R))) A w € uf (¢, p(R)) (def. of aa)
— ' e p(R)A[Mv.e'] € p(c,amr o p(R)) Aw e puf(t, p(R)) (by Lemma 4)

Secondly observe if w € uf (¢, p(R)) then

as( | (e}, (o wl})

r'€p(R)
— ag({e'}, {r'[o ] | € p(R)})) (def. Us)
— ({e'}, am o p{r'[v = w] | 7' € p(R)})) (def. as)
Co ({¢'}, am o p(R)[v — aa({w})]F) (by Lemma 5, 6)

Thirdly observe

U (e} ame p(R)v— aa({w))]f)
[

wepf (t,p(R))

—{et, U amesB)v— aa({wh)) (def. Us)
wenf (tp(R))
={Yanep® U |J 0o aa{w}) (def. —[-]")
wepy (t,p(R))
— (Y anep®v— ) as{uhl) ek, O
wepf (t,p(R))
— (€'}, anr o p(R)[v = aa (1, p(R))) (2w a CIV)

= ({¢}, amr o p(R)[v > pb(t, 0 o p(R))]E) (by Lemma 4)



Hence

al U, N al))
cteE reR

[Av. e, r']epnf(c,{r})
we pd(t,{r})

Coool U, () (o )
cteE 1’ ep(R) (ﬁI‘St ObS.)

M. e']e p,g(c,an op(R))
w e uf (t,p(R))

I !
U, eel U, (e (o alp)
cteE r’ € p(R) (Ol@ a CJM)
M. el € pb(c,amop(R))
w € py (t,p(R))

e U, (e anep®lv— as({uh]f)

Ry (second obs.)
[Av.e']e uﬁ(c,anop(R))
w e puf (t,p(R))

= U, e aneo®) e pitan o p(R)])
ctek
M. e’] € ub(c,amop(R))

(third obs.)

Since ag(S) = (E, an o p(R)) we define the third set of F* as this set (with R
for ar o p(R)). By construction ag(Fyx (S)) Cg F*(ag(S)) holds. O

This result in turn enables us to prove the following (standard) theorem
stating the correctness of the analysis [8].

Theorem 1 (Fixed-point transfer theorem). ag o ax (Ifp F..) C Ifp F*

The resulting analysis in Figure 6 is striking. By an independent attribute
abstraction of a standard collecting semantics, we have encountered a demand-
driven CFA. Demand-driven CFA has been discovered independently [2,3,15],
and is usually presented as an extension (or improvement) to 0-CFA. Our result
on the other hand explains it as a natural abstraction of a reachable states
collection semantics.

Expressing a semantics for a CPS language as a transition system lends it-
self to abstract interpretation as originally expressed by Cousot [5]. Since all
intermediate results in CPS are already named, i.e., bound to an identifier, a
control-flow analysis merely becomes a question of computing an abstract envi-
ronment. As both the continuations and closures live in the environment there is
no need for an explicit stack, as it lives as a chain of closures in the environment.
We have found no need to introduce new concepts such as labels or caches [4,27].

8 Implementation and example

We have implemented a prototype of the derived analysis in OCaml.® The core
of the algorithm constitutes 60 lines of source code. To illustrate the 0-CFA

6 available at <http://www.brics.dk/~jmi/Midtgaard-Jensen:SAS08/>
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(b) Abstract transition function

Fig. 6: Demand-driven 0-CFA

nature of the analysis we recall an example from Nielson, Nielson, and Han-
kin’s textbook [26]: let £ = (fn x => x) in £ £ (fn y => y). The expres-
sion Mkg. (Af, ko. ff (Ava. v Ny, ks. ks y) k2)) (Az, k. ke x) ko is a CPS version of
the same example. After 8 iterations the analysis reaches a fixed point deter-
mining that all serious expressions of the example are reachable. The inferred
abstract environment is given in Figure 7. Just as the textbook 0-CFA the de-
rived analysis merges all bindings to z, which affects the final answer v,, and
results in the overly approximate answer of two abstract closures.

k. — {stop} f={[A\z, k. ke 2]}
k03k2ak5H{[AUT'kT ’l}r]} yH{[Ay7k5k5 y]}
ks — {[Ava. va Ay, ks ks y) k2], [Nor. kr vr]} @, v, 0r — {[Az, ke ke 2], [Ny, ks. ks y]}

Fig. 7: Inferred abstract environment

9 Related work

The only existing demand-driven 0-CFA for a CPS language that we are aware of
is that of Ayers [2], who used Galois connections to express the correctness of 0-
CFA for a CPS language. After formally proving his 0-CFA correct he suggests



a number of improvements. One of these is use-maps, the idea of which is to
only re-analyse parts of the program where recent additions will have an effect
on the fixed-point computation. A later refinement of use-maps incorporates
reachability, resulting in an algorithm which will only re-analyse reachable parts
of the program where recent additions will have an effect. Ayers’s work differs
from our result in that: (a) it does not use an off-the-shelf starting point,” (b)
it does not use off-the-shelf Galois connections, and (c) reachability is added
afterwards as an extension (but not formally proved, e.g., expressed with Galois
connections).

Cousot and Cousot have championed the calculational approach to program
analysis for three decades [6,8-11]. Cousot has provided a comprehensive set of
lecture notes [6], in which he calculates various abstract interpreters for a simple
imperative language. Nevertheless, the calculational approach to control-flow
analysis of functional programs has received little attention so far.

Shivers [22,31,32] has long argued that basing a CFA on a CPS language
simplifies matters as it captures all control flow in one unifying construct. In
his thesis [32] he developed control-flow analyses for Scheme including (control
and state) side effects. Shivers [32] did not consider demand-driven analysis,
nor formulate correctness using Galois connections. Initially the development
was based on an instrumented denotational semantics, however the more recent
work with Might is based on instrumented abstract machines [22]. In contrast
we have developed an analysis starting from a well-known and non-instrumented
abstract machine.

Sabry and Felleisen 28] have formulated interpreters and corresponding pro-
gram analysers for languages in direct style and CPS to compare formally their
output when run on equivalent input. Their analyses are formulated as inference
rules, and as such an analysis may diverge when implemented directly. They
therefore detect loops in the analyser and return top when encountering one. In
contrast our calculated analysis needs no such ad-hoc modifications. For a further
discussion of related work we refer to a recent survey by the first author [21].

10 Conclusion and further work

To the best of our knowledge we have given the first calculated 0-CFA deriva-
tion. The calculations reveal a strikingly simple derivation of a demand-driven
0-CFA, a variant which has been discovered independently. Our derivation spells
out the approximation by expressing it as a combination of several known Galois
connections, thereby capturing the essence of the CFA approximation as an inde-
pendent attributes abstraction. We have derived the analysis from the reachable
states of a well-known abstract machine without resorting to instrumentation.
Cousot and Cousot [11] have pointed out several alternative abstractions to
sets of pairs, one of which is a pointwise coding. When applied to the states of the
CE machine the abstraction may be the key to calculating a flow-sensitive CFA.
We plan to investigate such a calculation. A natural next step is to consider
the calculation of the contert-sensitive k-CFA hierarchy. Finally it would be

" though to be fair, our starting point, the CE machine in Flanagan et al. [14], and
Ayers’s thesis are both from 1993



interesting to investigate whether proof assistants can aid in the calculation of
future analyses.
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