
2012 ACM SIGPLANWorkshop on ML

Handling Overflow in MLton

Alexander Bjerremand Hansen

Mjølner Informatics

alx@cs.au.dk

Jan Midtgaard

Aarhus University

jmi@cs.au.dk

Abstract

The definition of Standard ML dictates that overflow in inte-
ger arithmetic raises an overflow exception. As a consequence
standard-conforming implementations of the language have to
check for overflow which can be costly. We examine the possibility
of further optimizing the code generated by the industrial-strength
compiler MLton. By studying the code generated for integer arith-
metic we identify dead code where overflow cannot happen. We
propose a flow-sensitive integer interval analysis that detects and
removes such needless overflow checks on integer arithmetic. We
have implemented an analysis prototype in Standard ML and inte-
grated it into MLton as an additional optimization pass. It is able to
remove 22% of the overflow checks in the MLton benchmark suite.
The binary size of the programs decrease up to 10% and the run
time of arithmetic heavy programs decrease significantly - in some
cases up to 27%.

1. Introduction

Program optimization is an important aspect of a compiler. The
Standard ML compiler MLton is a whole program optimizing com-
piler that focuses on generating fast and small binary executables.
However MLton, the industrial-strength compiler developed over
the last 14 years, produces sub-optimal code regarding overflow
handlers. In this paper we identify and remove dead overflow han-
dlers in real-world programs using standard static analysis tools and
thereby reduce the size and run time of the generated binaries.

1.1 The MLton compiler

During the compilation of ML programs several intermediate lan-
guages are used internally by the MLton compiler. These lan-
guages primarily serve as translation steps from ML source code
to machine code where each translation performs one or more
transformations on the code from the previous level. Among these
translations are monomorphisation that removes all uses of poly-
morphism and closure conversion (or rather: defunctionalization)
that removes higher-order functions. The intermediate language
reached after closure conversion is a simply-typed, first-order lan-
guage called SSA (Static Single-Assignment). This intermediate
form allows for easy optimization and the MLton compiler per-
forms many of its optimizations at this level.

1.2 SSA form

SSA form is a common intermediate representation used for opti-
mization in modern compilers. As the single-assignment part of the
name suggests, each variable has only one definition in the program
text. The static part emphasizes that the single-assignment part is a
compile-time property rather than a dynamic one since an assign-
ment can be placed in a function that is called several times.

In MLton’s SSA form arithmetic occurs in a construct with an
explicit overflow handler attached and overflow will implicitly be
signaled by the primitive arithmetic operations. Since the construct

that performs possibly overflowing arithmetic is a control transfer
from one SSA block to the next, the control-flow on the primitive
overflow is explicit. The overflow handler block will then explicitly
raise SML’s dedicated Overflow exception with the raise control
transfer. Alternatively, arithmetic in SSA can be performed using
primitive function definitions that take the operands as parameters
and return the result of the calculation. These operations do not
signal overflow.

Consider the following example taken from the intermediate
output when compiling hamlet.sml from MLton’s benchmark
suite:

L_25120 (x_16013: word32)
x_10771: bool = WordU32_lt (x_10769 , global_33)
case x_10771 of

true => L_22171 | false => L_24271
L_22171 ()
loop_355 (x_10769 + global_5) Overflow => L_24272 ()

It contains arithmetic with an explicit overflow handler attached
in the last line. Note that there are no other call sites to the label
L_22171 than the one in the case transfer above, so we are guaran-
teed to have been through the preceding comparison when arriving
at that label. The involved variables with the global prefix are de-
fined as constants in the header of the SSA program as follows:

global_5: word32 = 0x1
global_33: word32 = 0x3B7

2. Analysis and Transformation

Overflow of integers is essentially concerned with the number of
bits used to express a certain value. If the number of bits required
is bigger than what a resulting word type can hold an overflow
happens. We therefore need to model the number of bits used by
variables in the program. For our analysis we will use an inter-
val lattice for each variable in the program. For n-bit words let
MAX = 2n−1 − 1 and MIN = −(2n−1) and define the finite
interval lattice 〈IL;⊑〉 as follows:

IL = {〈a, b〉 | a, b ∈ {MIN , . . . ,MAX } ∧ a ≤ b} ∪ {⊥}

⊥ ⊑ 〈a, b〉 〈a, b〉 ⊑ 〈c, d〉 , c ≤ a ∧ b ≤ d

Based on IL we now define a lattice I that relates variables to
intervals under a pointwise ordering: 〈Var → IL; ⊑̇〉.

2.1 Value propagation

To gain information for each variable we must consider what con-
structs in the SSA program that give rise to information and how to
update the interval lattice accordingly. The following rule captures
the behavior of a constant definition of a variable on the lattice I .

(X ← v) ∈ P v : word

I[[X]] = 〈v, v〉
CONSTANT DEFINITION

1 2012/9/13



This rule specifies that for all constant word values v assigned
to a variable X in the input program P , we update I’s entry for X
with the interval containing only v. Several other rules propagate
this information throughout the program. For example, for calls in
the source code, we join the value of I for an actual parameter into
the receiver’s formal parameter.

There are rules for every construct in the SSA language that
manipulate word values; arithmetic, primitive functions, calls, tail
calls, and gotos. Arithmetic operations are defined on the interval
lattice and performed on the abstract values to soundly model
integer arithmetic on variables in the SSA source. Due to lack of
space we only list two more rules. The first rule is used to refine
the intervals for variables when we learn more about them. When
a statement S compares two word variables and uses the result in
a branch, we obtain valuable information about both variables on
both branches.

(X ← Word_lt(x1, x2)) = S S ∈ P
X : bool label(S) = l

AT,x1
[[X]] = L(x1, l) ≺ L(x2, l)

AT,x2
[[X]] = L(x2, l) � L(x1, l)

AF,x1
[[X]] = L(x1, l) � L(x2, l)

AF,x2
[[X]] = L(x2, l) ≺ L(x1, l)

PRIM. DEF. LT

The symbols ≺ and � are defined as interval bounding operations
with signature I × I → I . The function L(x, l) is used to look
up the interval for the variable x when we need the abstract value
inside the SSA code block l. AT,y[[X]] and AF,y[[X]] represent the
values of the variable y if the boolean variable X has evaluated to
true and false, respectively. Both these lattices store temporary
information that will be used when a case transfer dispatches on
the boolean variable X . When this happens the following rule will
propagate the stored information:

(case x of true=>l | false=>l′) ∈ P x : bool
AT,y [[x]] = i AT,z [[x]] = i′

AF,y [[x]] = i′′ AF,z [[x]] = i′′′

i ⊑ F [[l]][[y]] i′ ⊑ F [[l]][[z]]
i′′ ⊑ F [[l′]][[y]] i′′′ ⊑ F [[l′]][[z]]

CASE TRANS.

The information is moved from the temporary lattice A to a new
lattice F that represent facts. Facts are maps from SSA blocks to
variables to intervals. These facts are used in the lookup functionL.
When we need the interval for a variable we first check if a fact is
present in the map for the variable’s enclosing code block. If so, we
return the fact interval. Otherwise we fall back to the interval value
from the global I lattice. These rules and a number of additional
ones express the static analysis over the lattices I , A, and F and
enable us to transform a given program based on the analysis result.

2.2 Program transformation

For each arithmetic transfer let a and b be the arguments to the
arithmetic operator op and letMIN andMAX be the smallest and
largest number, respectively, that the resulting variable can hold.
These two numbers depend on the number of bits in the word and
whether or not the value is signed (using one bit for the sign). Let
I[[a]] = 〈al, ah〉 and I[[b]] = 〈bl, bh〉 and a op b = c then we have
I[[c]] = I[[a]] ōp I[[b]] = 〈cl, ch〉.

To detect if an arithmetic transfer is guaranteed to not overflow
we inspect the bounds of the resulting interval. If cl > MIN and
ch < MAX no overflow can happen and we are able to transform
this arithmetic transfer by removing the overflow check.

To remove the overflow check we translate the arithmetic trans-
fer into a primitive function call and a goto transfer. Hence we
translate l(a op b) Overflow => l′ into x ← pop(a, b) followed
by l(x), where x is a fresh variable and where pop is the primitive
function corresponding to the operator op in the arithmetic trans-
fer; Word_add, Word_sub, or Word_mul. Following this transfor-
mation, MLton’s ecosystem of SSA optimization passes may now
remove the dead handler code at l′.

3. Results

If we examine the example SSA code from the introduction the
arithmetic in the last line cannot possibly overflow. The variable
x_10769 is used in a less-than comparison against the constant
global_33 which in this case is 951 in decimal. Four facts are
created for the boolean variable x_10771 and when the case trans-
fer branches on this boolean variable we are able to utilize those
facts. In the true branch we now know that variable x_10769 is
less than 951 and when global_5 (which is 1) is added to it no
overflow can happen in 32-bit arithmetic.

When compiling hamlet.smlwith this optimization and search-
ing for the specific instance from the example we find the following
snippet:

loop_355 (x_10769: word32)
x_10772: bool = WordU32_lt (x_10769 , global_33)
case x_10772 of
true => L_22171 | false => L_24271

L_22171 ()
x_18279: word32 = Word32_add (x_10769 , global_5)
loop_355 (x_18279)

We have successfully removed an overflow transfer and therefore
an explicit overflow check on arithmetic that can never overflow.

The first measure we will examine is the number of overflow
handlers that are transformed in the entire MLton benchmark suite.
We find that out of 4240 overflow transfers we are able to transform
913 (22%) into a statement and a goto transfer. This leads to
reduced binary sizes of many of the programs ranging from 0-
10% depending on the amount of removed arithmetic transfers and
whether the removal of overflow checks will create dead code that
is subsequently removed by MLton’s other optimization passes.

The run time of the programs are also reduced depending on
how many times the transformed arithmetic is run. In benchmarks
with intensive integer arithmetic such as imp-for we are able to
reduce the run time by 27%. Below we list a subset of benchmark
programs representable of the entire benchmark suite and their
corresponding compile-time (CT) and run-time (RT) results:

Benchmark LOC # hits ∆ CT RT w/o RT w ∆ RT

hamlet 22.9K 41 19.15 9.60 9.59 -0.01

imp-for 31 4 -0.05 8.88 6.55 -2.33

matrix-multiply 60 8 -0.03 6.25 4.56 -1.69

mlyacc 7.3K 79 8.37 5.61 5.61 0

tailfib 22 5 -0.04 10.54 8.45 -2.09

For more details we refer to the first author’s MSc thesis [1].

4. Conclusion

We have illustrated how to detect and remove unused overflow han-
dlers by using a flow-sensitive interval analysis to drive an addi-
tional MLton optimization pass. The result can successfully remove
22% of the emitted overflow checks for MLton’s benchmark suite
and results in speed ups of up to 27%. The optimization comes at
the cost of increased compile times. The current prototype imple-
mentation is unoptimized in this respect and as a result does not
scale well with the input size. This may be improved by a better
choice of data structures and by adjusting the widening heuristics
of the analysis; only in the context of a loop is widening necessary.
Finally we see several possibilities for improving the analysis fur-
ther, e.g., modeling vector lengths and intraprocedural return values
more precisely can potentially enable even more optimization.

References

[1] Hansen, A. B. 2011. Exception Analysis in MLton, MSc thesis, Dept.
Comp. Sci., Aarhus University. Available at http://cs.au.dk/~alx/.

2 2012/9/13


